
Copyright

by

Dan Gabriel Tecuci

2007

The Dissertation Committee for Dan Gabriel Tecuci

certifies that this is the approved version of the following dissertation:

A Generic Memory Module for Events

Committee:

Bruce W. Porter, Supervisor

Raymond J. Mooney

Benjamin J. Kuipers

Kenneth J. Barker

Bradley C. Love

A Generic Memory Module for Events

by

Dan Gabriel Tecuci, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

Acknowledgments

First and foremost, I would like to thank my advisor, Bruce Porter, for his friendship, advice

and guidance during the difficult process of writing a dissertation. I benefited greatly from

his generosity with his time, his patience, and his willingness to help every step of the way

while allowing me the freedom to find my own way as a researcher. His ability to see

through my often confused ideas the core of something valuable helped me immensely. He

truly was the best advisor I could have asked for.

I would also like to thank the members of my committee, Ray Mooney, Ben Kuipers,

Ken Barker and Brad Love, for their helpful suggestions, comments and stimulating dis-

cussions. Ray’s Machine Learning class, one of my first in grad school, trained me as an

experimentalist. I used his code in the experiments reported in this thesis. Working with

Ben on modeling human way-finding taught me about long term research goals and how

simple things like visualizing data properly can go a long way. From Brad I learned that

studying human memory, even when you are not trying to model it, can be a great source of

inspiration for AI. Over the years, I had the opportunity to work closely with Ken on various

projects. He has been a mentor and a great friend. This dissertation and my research career

in general benefited greatly from his advice.

I am fortunate to have collaborated with accomplished researchers like Peter Clark,

Vinay Chaudry, and Brian Stankiewicz from whom I had a lot to learn.

I really enjoyed working in the Knowledge Systems Research Group with great

people including Bill Jarold, Art Souther, Geoff King, Saurabh Baji, Bhalchandra Agashe,

iv

Sourabh Patwardhan, Steve Wilder, and Charlie Benton.

Many thanks to my officemates over the years James Fan, Peter Yeh, Jason Chaw,

Michael Glass, and Doo Soon Kim. I will miss our stimulating discussions and the atmo-

sphere of Taylor 4.115A. Special thanks for Peter Yeh for providing the matcher used in the

implementation of the generic memory module and valuable advice on graph matching. Ja-

son Chaw provided technical support for the Basic Problem Solver and helpful suggestions

on some parts of this dissertation.

I would like to thank Gloria Ramirez, Katherine Utz and the rest of the staff of the

Department of Computer Sciences for all their help over the years. Besides sharing advice

on life, fashion and politics, Stacy Miller made sure my paycheck was always on time. The

people at the International Office helped me seamlessly navigate through the bureaucracy

associated with studying in a foreign country.

I would also like to thank all my teachers over the years and especially Mihai Stan,

Ştefan Smarandache, Ilie Grigore, Adina Florea and Irina Atanasiu who inspired and enter-

tained my thirst for knowledge.

My going away across the world to grad school was not easy for my family. How-

ever, they offered me their unconditional support and encouragement every step of the way.

For that I am grateful. Without them I would not be who I am today. I just wish all of

them could still be here and share this moment with me. I am especially indebted to my

aunt and uncle, Sanda and Gheorghe Tecuci, for their continued support. My uncle’s advice

regarding various career choices has been invaluable.

My friends in Austin made my stay here so much more enjoyable.

I would like to thank my wife, Viorica Alexandra Teodorescu, for so many things,

but most of all, for giving all this a purpose.

The research presented here was funded by SRI, DARPA, Vulcan, and The Univer-

sity of Texas at Austin. I gratefully acknowledge their support.

v

DAN GABRIEL TECUCI

The University of Texas at Austin

August 2007

vi

A Generic Memory Module for Events

Publication No.

Dan Gabriel Tecuci, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Bruce W. Porter

The ability to remember past experiences enables a system to improve its perfor-

mance as well as its competence. For example, a system might be able solve problems

faster by adapting previous solutions. Additional tasks, such as avoiding unwanted be-

havior by detecting potential problems, monitoring long-term goals by remembering what

subgoals have been achieved, and reflection on past actions, become feasible.

As the tasks that an intelligent system accomplishes become more and more com-

plex, so does the experience it acquires in the process. Such experience has a temporal

extent and is expressed in terms of concepts and relations with deep semantics associated

to them. Memory systems should be able to deal with the temporal aspect of experience,

exploit this semantic knowledge for storage and retrieval and do so in a scalable fashion.

vii

However, relying just on experience will not achieve a broad coverage, as it needs to be

used in conjunction with other reasoning mechanisms. That is why we need the ability to

add episodic memory functionality to intelligent systems.

Today’s knowledge-based systems are complex software applications and the ability

to develop them in a modular fashion, using generic, reusable components is essential.

We propose to separate the episodic memory from the system that uses it and to

build a generic, reusable memory module that can be attached to a variety of applications

in order to provide this functionality. Its goal is to provide accurate, scalable, efficient

and content-addressable access to prior episodes. Having such a reusable memory module

should allow research to focus on the generic aspects of memory representation, organiza-

tion and retrieval and its interaction with the external application and it should also reduce

the complexity of the overall system.

In this dissertation we propose a set of general requirements that any memory mod-

ule should provide regarding memory encoding, storage and retrieval. We present an im-

plementation that satisfies these requirements and evaluate it on three different tasks: plan

synthesis, plan recognition and Physics problem solving. The memory module proved eas-

ily adaptable to these tasks, providing fast, accurate and scalable retrieval.

viii

Contents

Acknowledgments iv

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 The Problem of Storing Experience . 2

1.2 The Goals of this Dissertation . 3

1.3 Summary of Contributions of this Dissertation 4

1.4 Organization of the Dissertation . 5

Chapter 2 Related Work 6

2.1 Human Episodic Memory . 7

2.1.1 Episodic vs. Semantic Memory 7

2.1.2 Characteristics of Human Episodic Memory 9

2.1.3 Functions of Human Episodic Memory 10

2.2 Models of Episodic Encoding . 12

2.2.1 Dynamic Memory . 12

2.2.2 Episodic Encoding in Soar . 14

ix

2.3 Models of Episodic Retrieval . 15

2.3.1 Feature Indexing . 15

2.3.2 Structural Indexing . 20

2.3.3 Analogical Retrieval . 22

2.3.4 Spreading Activation . 25

2.4 Models of Episodic Storage . 27

2.4.1 Models of Forgetting . 27

2.4.2 Memory Reorganization . 28

2.5 Episodic Memory Uses in Intelligent Systems 29

2.5.1 The Basic Agent . 30

2.5.2 Soar EM . 31

2.5.3 ISAC . 33

2.5.4 Temporal Sensorial Information 33

2.6 Episodic Memory vs. Case-Based Reasoning 35

2.7 Chapter Summary . 35

Chapter 3 A Generic Memory Module for Events 37

3.1 Motivation . 37

3.2 The Need for a Generic Memory Module 38

3.3 General Memory Requirements . 39

3.3.1 Encoding Requirements . 39

3.3.2 Storage Requirements . 40

3.3.3 Retrieval Requirements . 40

3.4 Application Requirements for a Memory Module 41

3.4.1 A Flexible Interface . 41

3.4.2 Explaining the Retrieved Results 42

3.5 An Analysis of SOAR-EM . 42

3.6 Chapter Summary . 43

x

Chapter 4 An Implementation of a Generic Memory Module for Events 45

4.1 Episodic Encoding . 45

4.1.1 Episode Determination . 45

4.1.2 Episode Representation . 46

4.2 Storage . 50

4.2.1 Memory Indexing . 50

4.2.2 Forgetting . 54

4.3 Matching . 54

4.3.1 A Flexible Semantic Matcher . 54

4.3.2 Semantic Matching Uses in Memory Retrieval 56

4.4 Retrieval . 58

4.4.1 Retrieval Algorithm . 58

4.4.2 Retrieval Complexity . 60

4.5 Incremental Retrieval . 61

4.5.1 Incremental Retrieval Algorithm 61

4.5.2 Incremental Retrieval Complexity 64

4.6 Memory Interface . 65

4.6.1 The Store Function . 65

4.6.2 The Retrieve Function . 65

4.7 Chapter Summary . 66

Chapter 5 Memory-based Planning 68

5.1 The Planning Problem . 68

5.2 Memory-Based Planning . 69

5.3 Applying the Memory Module to Planning 69

5.3.1 The Logistics Domain . 70

5.3.2 Dataset . 71

5.3.3 Domain Knowledge . 71

xi

5.3.4 Experimental Setup . 72

5.3.5 Discussion . 73

5.4 Chapter Summary . 75

Chapter 6 Episodic-Based Plan Recognition 77

6.1 The Plan Recognition Problem . 77

6.2 Episode-Based Plan Recognition . 79

6.2.1 Case-Based Plan Recognition . 79

6.2.2 Episode Representation for Memory-Based Plan Recognition . . . 80

6.3 Experimental Evaluation . 80

6.3.1 The Plan Corpora . 81

6.3.2 Background Knowledge . 82

6.3.3 Experimental Setup . 84

6.3.4 Experimental Results . 87

6.4 Discussion and Future Work . 96

6.4.1 Summary of Results . 96

6.4.2 Limitations of Current Approach 97

6.4.3 Lessons Learned . 97

6.5 Chapter Summary . 99

Chapter 7 Memory-Based Problem Solving 100

7.1 The Problem Solving Problem . 101

7.2 The Basic Problem Solver . 102

7.3 Episodic-Based Problem Solving . 103

7.4 Experimental Evaluation . 104

7.4.1 Dataset . 104

7.4.2 Background Knowledge . 105

7.4.3 Experimental Setup . 105

xii

7.4.4 Results . 107

7.4.5 Discussion and Future Work . 110

7.5 Chapter Summary . 113

Chapter 8 Summary and Future Work 115

8.1 Dissertation Summary . 115

8.1.1 The Need for Memory . 115

8.1.2 Memory Requirements . 116

8.1.3 Implementation of the Generic Memory Module 117

8.1.4 Experimental Evaluation . 117

8.2 Additional Applications . 118

8.2.1 Incremental Recognition . 118

8.2.2 Hierarchical Recognition . 118

8.2.3 Multiple Plan Recognition . 119

8.2.4 Episodic Memory in Natural Language Question Answering 119

Bibliography 120

Vita 136

xiii

List of Tables

6.1 The Linux and Monroe plan corpora description 82

6.2 Experimental results for the episodic-based approach on the goal schema

recognition task in the Linux domain. 88

6.3 Experimental results for the episodic-based approach on the goal schema

recognition task in the Monroe domain. 88

6.4 Experimental results for the episodic-based approach on the goal parameter

recognition task in the Linux domain. 91

6.5 Experimental results for the episodic-based approach on the goal parameter

recognition task in the Monroe domain. 91

6.6 Experimental results for the episodic-based approach on the instantiated

goal recognition task in the Linux domain. 93

6.7 Experimental results for the episodic-based approach on the instantiated

goal recognition task in the Monroe domain. 93

xiv

List of Figures

1.1 An example of question in Physics. 2

1.2 Another example of question in Physics. 2

4.1 Graphical representation of a planning problem description from the Logis-

tics domain . 48

4.2 The same planning problem from the Logistics domain represented as triples 49

4.3 The set of remindings for the above planning problem 49

4.4 Difference links connecting two episodes. *Episode1 represents a Package-

Delivery where the original city of the Package is the same as the delivery

city. *Episode2 represents a Package-Delivery in which the package has to

be delivered to a location in a different city than that of origin. 53

5.1 An example of a planning problem in the Logistics domain. 71

5.2 A part of the ontology for the Logistics domain. Concepts in bold are pre-

defined in the CLib, those in italic are intermediate levels of the ontology,

while those in cursive correspond to domain objects or operators. 72

5.3 Accuracy results for the memory-based planning and goal classification

tasks for EM and kNN(5). Error-bars represent the standard deviation. . . . 74

xv

5.4 Number of explored episodes for the memory based planning and goal clas-

sification tasks for EM and kNN(5). Error-bars represent the standard devi-

ation. 74

5.5 Number of stored episodes for the memory based planning and goal classi-

fication tasks for EM and kNN(5). Error-bars represent the standard deviation. 75

6.1 A part of the ontology for the Linux domain. Indentation is proportional

to depth in the ontology. Concepts in bold are pre-defined in the CLib,

those in italic are intermediate levels of the ontology, while those in cursive

correspond to domain objects or operators. 83

6.2 A part of the ontology for the Monroe domain. Indentation is proportional

to depth in the ontology. Concepts in bold are pre-defined in the CLib,

those in italic are intermediate levels of the ontology, while those in cursive

correspond to domain objects or operators. 84

6.3 Comparison between episodic-based and a statistical approach on the goal

schema recognition task in the Linux and Monroe domains. Error-bars rep-

resent the standard deviation. 89

6.4 Comparison between episodic-based and a statistical approach on the goal

parameter recognition task in the Linux and Monroe domains. Error-bars

represent the standard deviation. 92

6.5 Comparison between episodic-based and a statistical approach on the in-

stantiated plan recognition task in the Linux and Monroe domain. Error-

bars represent the standard deviation. 94

6.6 Number of explored actions per recognition session in the Linux domain.

Error-bars represent the standard deviation. 95

6.7 Number of explored actions per recognition session in the Monroe domain.

Error-bars represent the standard deviation. 96

xvi

7.1 An example of question in Physics. 101

7.2 An example of question in simplified English. 102

7.3 Problem solving accuracy with episodic memory for single and multi-model

questions. Error-bars represent the standard deviation. 107

7.4 Comparison between number of search space nodes explored by the prob-

lem solver with and without episodic memory for single and multiple model

questions. Error-bars represent the standard deviation. 108

7.5 Comparison between problem solving times and without episodic memory

for single and multiple model questions. Error-bars represent the standard

deviation. 110

7.6 Problem solving time break-down for answering single model questions

with and without episodic memory. Error-bars represent the standard devi-

ation. 111

7.7 Problem solving time break-down for answering multiple model questions

with and without episodic memory. Error-bars represent the standard devi-

ation. 112

xvii

Chapter 1

Introduction

Past experience is an important source of knowledge that enables a system to improve its

performance as well as its competence. For example, a system might be able solve problems

faster by adapting previous solutions. Additional tasks become feasible, such as avoiding

unwanted behavior by detecting potential problems, monitoring long-term goals by remem-

bering what subgoals have been achieved, and reflection.

Learning at the time of experiencing might not have been possible (e.g. due to time

constraints) or desirable (e.g. the observed event is deemed uninteresting), but may become

so later (e.g. more time is available and reflection can be performed, or a pattern emerges

in the light of new events). A learner that tries too eagerly to learn from experience and

then discards it makes the strong assumption that it can learn all that is possible from that

experience at that time. This assumption might be true for systems accomplishing simple

tasks and for those that are short-lived, but a complex intelligent system with a longer life-

expectancy needs to store and reuse its past experience.

A lot of today’s intelligent systems do not use past experience in their functioning.

Take, for example, Project Halo [57] whose goal is to develop tools that would enable

subject matter experts to encode their knowledge (i.e. concepts, relations, procedures) in

domains like chemistry, physics, and biology. The resulting knowledge bases are intended

1

to answer AP-level questions in those domains.

Let us consider the following question (Figure 1.1) from the Physics domain.

An object starts from rest

and reaches a speed of 28 m/s in 2 s.

What distance does it cover?

Figure 1.1: An example of question in Physics.

A memory-less Halo system would systematically search the knowledge base of

models (i.e. sets of equations describing motion) and apply their rules until an answer is

found or a certain threshold has been exceeded. When a new question (see Figure 1.2) has

to be answered, the system will discard the results of its problem-solving process for the

previous question and redo the search process.

An object is moving at a speed of 1 m/s.

Over the next 5 m, its speed reaches 2 m/s.

What is the duration of the move?

Figure 1.2: Another example of question in Physics.

In contrast, a memory-enhanced Halo system, would store its previous problem-

solving experience and use it to guide search by suggesting models that have been previ-

ously applied to similar questions. Thus, more appropriate models are tried first and the

system is able to improve both its performance at the task (by solving problems faster), as

well as its competence (by spending more time examining more relevant models).

1.1 The Problem of Storing Experience

For a memory system to be useful it needs to provide fast access to the appropriate set of

experiences that are relevant to the situation at hand, and to ignore irrelevant ones.

As the tasks that an intelligent system accomplishes become more and more com-

plex, so does the experience it acquires in the process. A memory for such a system has to be

2

able to cope with this complexity and make available the acquired experience for whatever

future use the system may have for it. For example, a planner needs not only to build plans

for a given goal, but also to monitor their execution in order to detect and avoid failures and

to recover from such failures if they still occur.

A memory for such a system should be able to store and retrieve past experience

using a broad range of criteria: the goals that were achieved, the sequence of actions that

were taken, the failures that were avoided and those encountered. As the life-expectancy of

intelligent systems increases, a memory system needs to be able to deal with such complex

experience in a scalable way.

1.2 The Goals of this Dissertation

Today’s knowledge-based systems are complex software applications and the ability to de-

velop them in a modular fashion, using generic, reusable components is essential. The need

for generic tools to aid the development of knowledge-based systems has long been recog-

nized: E-MYCIN [120] separates domain specific knowledge (i.e. rules) from the inference

mechanisms.

We propose to separate the episodic memory functionality from the system that uses

it and to build a generic, reusable memory module that can be attached to a variety of

applications in order to provide this functionality. Its goal is to provide accurate, scalable,

efficient and content-addressable access to prior episodes. Having such a reusable memory

module should allow research to focus on the generic aspects of memory representation,

organization and retrieval and its interaction with the external application and it should

also reduce the complexity of the overall system.

In this dissertation we address the following questions:

• Can a generic memory module be built? What should be its characteristics?

• Does there exist a representation for generic events, such that it can be used with

3

different types of events and queries?

• Can such a memory provide a flexible interface that allows various types of queries

to be formulated?

• Can we devise domain-independent organization and retrieval techniques that effi-

ciently index events?

The proposed episodic memory module is not intended to provide complete prob-

lem solving solutions as this would require domain specific knowledge (e.g. for adapting

prior experience); rather, the episodic memory will have a supporting role.

1.3 Summary of Contributions of this Dissertation

In this dissertation we proposed to separate the episodic memory functionality from the

application itself and build a generic episodic memory module for events that can add such

a functionality to a broad range of intelligent systems.

We presented a set requirements that any memory module should follow including

internal requirements (in terms of memory encoding, storage and retrieval) and external

ones (in terms of the interface to external applications).

We proposed a generic representation for events, an organization scheme for such

representations and two retrieval algorithms - one for the case when the stimulus is pre-

sented all at once and one for the case when it is presented sequentially.

We implemented a memory module that satisfies these requirements using the pro-

posed representation and retrieval mechanisms.

We evaluated the implementation of the proposed memory module on three differ-

ent tasks: planning, plan recognition, and Physics problem solving. The memory module

was easily customized to perform these tasks.

The results of the our empirical evaluation show that memory is efficient, accu-

rate and scalable. The proposed indexing mechanism significantly increased performance

4

over systematic search, while preserving competence (for planning and Physics problem

solving). This increase is considerably larger for search spaces that grow exponentially, as

memory is able to prune more alternatives. Incremental episodic-based goal schema recog-

nition achieved similar precision, higher recall and higher convergence when compared to

a statistical approach. For parameter recognition, the episodic-based approach provided

higher recall, but lower precision and convergence than the chosen statistical approach.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 surveys previous ap-

proaches dedicated to the study or implementation of episodic memories in intelligent sys-

tems, ranging from psychology to cognitive modelling.

Chapter 3 presents the set of requirements for a generic memory module for events,

including episodic encoding, storage, retrieval and the interface with the external applica-

tion.

Chapter 4 presents our implementation of such a memory module. We present a

generic representation of events, a multi-layer indexing scheme and retrieval algorithms for

such representations, as well as a flexible programming interface.

Chapter 5 presents the application of the memory module to the tasks of memory-

based planning and goal classification in the Logistics domain and the results of an empiri-

cal evaluation.

Chapter 6 presents an application to the domain of plan recognition in the Linux

and Monroe domains as well as the results of an empirical evaluation.

Chapter 7 presents the application of the memory module to the task of problem

solving. The generic memory module was used to enhance a problem solver in the domain

of question answering of AP-level Physics questions. Results of the empirical evaluation of

this application are reported.

5

Chapter 2

Related Work

The modern study of memory (started by Ebbinghaus [36]) has been approached in dif-

ferent contexts and with different goals by philosophers, psychologists and researchers in

Artificial Intelligence and Cognitive Science. We will look at findings from these domains

as inspiration.

Our goal is to implement a generic memory for events that can be used by intelligent

systems in a large number of applications. Although we seek inspiration from the human

episodic memory, we do not attempt to build a model of it, but merely to replicate some of

its functionality such that it can be used by an intelligent system.

We will look first at the division of human memory into semantic, episodic and

procedural memories by characterizing the similarities and differences between them. As

we are interested in building a memory module for events, we will take a closer look at the

human episodic memory and its general functions as described by Tulving [119].

We will then survey approaches to building episodic memories from the both a

cognitive and from an engineering perspective. We look at models of each of the three

activities of episodic memory and then at how memory has been used in intelligent systems.

6

2.1 Human Episodic Memory

Human memory can be divided mainly into episodic, semantic, procedural and working

memories 1.

Human Episodic Memory is a functionally distinct subsystem of human memory

that is concerned with remembering specific sequences of events [119]. This ability of

humans to rapidly acquire episodic memories has been the focus of considerable research

in psychology and neuroscience, and there is a broad consensus that this form of memory is

distinct both in its functional properties and in its neural basis from other forms of memories

involving common sense knowledge, perceptual-motor skills, priming, and simple classical

conditioning [107]2.

2.1.1 Episodic vs. Semantic Memory

Episodic Memory refers to a memory that maintains a record of ‘events’ pertaining to

a person’s ongoing perceptions, experiences, decisions and actions [119, 109]. Episodic

memory is concerned with unique, concrete, personal experience dated in the rememberer’s

past (e.g. our last trip to the mall), while semantic memory [39] refers to a person’s

abstract, timeless knowledge of the world that he/she shares with others (e.g. the color of

the sky). Episodic and semantic memory subsystems are thought to be functionally distinct

but closely interacting memory systems [119].

Similarities

The episodic and semantic memory subsystems have a number of similarities: they deal

with knowledge acquisition mostly through senses, this knowledge is retained in a passive

and automatic way, requiring no effort on the part of the subject, and they both use this

1Shastri [109] mentions also prospective (memories of intentions) and utile memory (stores memories of

utilities associated with situations).
2For a review of relevant experimental findings see [113, 33, 103].

7

knowledge, retrieval being triggered by stimuli, subjects are not being aware of it, but only

of its results.

Both episodic and semantic memories are thought to be propositional in nature -

they can be contemplated introspectively, can be communicated to others in some symbolic

form and questions about their veridicality can be asked. These characteristics contrast

with those of the procedural memory [127], a memory subsystem concerned with the

acquisition and utilization of procedures and skills, which is non-propositional.

Differences

Although they have a number of similarities, episodic and semantic memories differ signif-

icantly in other respects. These differences can be categorized along three dimensions: the

kind of information they handle, their operation and their applications [119].

In terms of the kind of information handled, episodic memory stores specific events

and situations, whose source is in the sensory systems, temporally organized and self-

centered. On the other hand, semantic memory stores statistical summaries and abstrac-

tions acquired from several experiences through comprehension, organized conceptually

and generally agreed upon.

Episodic memories are acquired rapidly (one-shot learning), have limited inferential

capabilities, are more dependent on the context in which they were encountered, and are

more vulnerable (i.e. can be easily lost, modified or changed). Access to episodic memories

depends more on the mental state of the person (whether or not he/she is in ‘retrieval mode’)

and tends to change the stored information. Semantic memories are acquired gradually

through incremental learning, have rich inferential capabilities, and are less vulnerable.

Access to semantic memories is more automatic and does not change the stored knowledge

that much. There is evidence that episodic memory develops after the semantic memory,

suggesting that the former needs more advanced capabilities [119].

8

Although not widely agreed upon3, the interdependence of episodic and semantic

memory has not been successfully argued against either. Tulving [118] cites evidence for

the ‘important role that the semantic system plays in the storage and retrieval of episodic

memory information’. He notes, however, that the two systems could operate independently

of one another, although not necessarily as efficiently [119].

In our current research, we will adopt the view expressed by Shastri [109], stating

that episodic memory is built in terms of semantic memory, its elements (event types, their

roles and parameters and their fillers) being represented in the semantic memory. Episodic

and semantic memory work together seamlessly, which constitutes the basis for generating

predictions, building explanations and making decisions.

2.1.2 Characteristics of Human Episodic Memory

The characteristics and general functions of human Episodic Memory will serve as a starting

point and inspiration in our investigation of the design of a generic episodic memory for an

intelligent system.

Tulving [119] lists the following characteristics of human episodic memory:

autobiographical - a person remembers episodes from his/her own perspective.

autonoetic - remembering entails the conscious re-experience of past memories, but the

retrieved memories are distinguished from the perception of the person’s current state.

temporally annotated - the person has a sense of the time when an episode has occurred.

imperfect - the memory is incomplete and can have errors.

activated - exposure frequency and recency affect the speed and probability of recall.

primed - recall occurs more quickly when it is primed by repetition or by recall of related

information or similar state.

3For a comprehensive discussion of various pros and cons of this view see [119]

9

forgetting - memory performance declines with time or intervening events; this behavior

is well fit by a power function (the power law of forgetting) [128, 129, 130]

2.1.3 Functions of Human Episodic Memory

A memory system is widely believed to have three high-level activities: encoding, storage

and retrieval. Each of these activities achieves a particular set of functions [119].

Encoding

Encoding [78, 119] is the process that converts a perceived event into a memory representa-

tion. The characteristics of the representation of such an event depend not only on the event

itself but also on how this event is encoded. The experiencer is not aware of this process.

Activation is the process of determining when a new episode needs to be recorded.

As observations are continuously made, an agent must have the ability to segment them into

episodes and decide when one needs to be stored.

Salient feature selection is concerned with deciding what information will be

stored. According to Tulving [119] only a salient part of an episode is recorded in memory.

This might play a role in the fact that memory is not perfect, but it is not clear where the

imperfections originate: during encoding, storage, retrieval or some combination of them.

Cue selection is the process of deciding what features of the state will cue the

memory. These are the features that index the specific episode.

From a computational point of view, another aspect of encoding is the particular

representation of episodes and their organization in memory.

Storage

Storage deals with the maintenance of the encoded episodes over time.

Storage medium addresses the question of how the encoded episode is maintained

in the memory store. There are diverging views of how human episodic memories are

10

stored. One asserts that episodes are stored in the hippo-campus and later migrate to the

cerebral cortex [113, 76], while others consider this to be unmotivated on computational

and biological grounds [81, 82, 108]. The latter proposes that an event’s episodic memory

trace persists in hippo-campus for as long as the event is remembered as a specific episode.

Forgetting means preventing recall of episodes (or portions of episodes). Empirical

studies show that human memory performance declines with time or intervening events.

This decay is well described by a power function - called the ’power-law of forgetting’

[11, 128, 129, 130]. Tulving [119] presents a theory under which newer memories prevent

the recall of older ones.

Retrieval

Retrieval is the process by which encoded episodes become available again to the agent,

being triggered by the agent’s state. There are two kinds of retrieval: automatic - not under

the control of the agent - and voluntary - triggered by the agent.

Retrieval is based on cues - especially salient or significant parts of the retrieval

information. Cue construction is the process of constructing the data used to retrieve a

memory. Depending on the type of retrieval (automatic or voluntary) a probe is constructed

either by the episodic memory system or by the agent.

Matching is the process of searching for episodic memories that are similar to given

a retrieval cue. It is dependent on the way the memory is stored and organized.

Recall means retrieving the memory from storage and placing it into working mem-

ory. After this process completes, the memory becomes available for the agent to use. This

process is affected by the rememberer’s current environment and state [119]. This process

is constructive [109], akin to mental simulation; upon its completion the event’s role-fillers

and parameter-value bindings are reinstated in the semantic, perceptual and sensory-motor

representations.

Recollective experience allows the act of remembering to affect future recall. Re-

11

membering an episode is a new episode itself, a sort of ‘meta-memory’, which may interfere

with the original memory.

The functions of the human episodic memory outlined here constitute a general

framework with respect to which all episodic memory models (or their implementations)

can be compared.

Each computational model of episodic memory - be it intended to model human

episodic memory capabilities or not - has to address all these functions by providing specific

algorithms that would implement them.

In the following sections we evaluate models of episodic memory based on how they

address the three main functions outlined above: encoding, storage and retrieval. Given the

knowledge representation framework we work in, we are mainly interested in symbolic

approaches as opposed to connectionist ones.

2.2 Models of Episodic Encoding

2.2.1 Dynamic Memory

One of the first and most influential computational models of human memory was proposed

by Schank [104]. It addresses mainly the encoding and retrieval aspects of episodic mem-

ory, identifying different kinds of memory retrievals and proposing memory structures that

support them. The idea of ‘experience as expertise’ promoted by Schank provided inspira-

tion for a whole field in Artificial Intelligence - Case-based reasoning [2].

Reminding - the process that manifests itself by the availability/recollection of pre-

vious memories upon encountering certain stimuli - is a crucial aspect of human mem-

ory. Schank asserts that it is the root of human understanding and learning processes. He

proposes the study of this phenomenon in order to uncover the structures in memory, his

hypothesis being that every time reminding occurs, some memory structure is revealed.

While processing information, humans make assumptions about what will happen

12

next; whenever such an assumption fails, it is recorded. Next time the same assumption

fails, the previous failure will be remembered. Schank calls this reminding based upon

event expectations. There is also goal-based reminding - that occurs while trying to under-

stand/predict other peoples’ goals - and plan-based reminding - when plans are tracked and

their quality in achieving the agents’ goals is assessed.

In order to encode these assumptions (called expectations) Schank proposes various

structures in memory at different levels of abstraction.

Scripts are sequences of actions that take place in one physical setting (e.g. a doc-

tor’s waiting room).

Scenes group actions with the same goal that happen at the same time (for example:

ordering at a restaurant). Specific memories are stored here, indexed by how they differ

from the general actions in the scene.

Memory Organization Packets (MOPs) are ordered set of scenes directed toward the

achievement of some goal, not inferable from the individual scenes. The MOP’s processing

function is to provide relevant memory structures (expectations) necessary to understand the

input (e.g. correct sequence of scenes). Schank identifies three types of MOPs: personal,

societal and physical.

Thematic Organization Packets (TOPs) contain abstract, domain independent knowl-

edge organized in terms of goals, plans and themes. TOPs organize collections of memories

with the same goals and conditions.

TOPs processing functions include: retrieving the memory of a story that illustrates

a point, coming up with adages at an appropriate point, recognizing an old story in new

trappings, noticing co-occurrence of seemingly disparate events and drawing conclusions,

recognizing something based on partial information and drawing conclusions, transferring

knowledge from one situation to another, predicting the outcome of newly encountered

situations.

All these structures act as organizers for their respective substructures [65]. MOPs

13

organize scenes and index instances that provide expectations about setting, characters and

sequences of scenes. Scenes index scripts and instances that provide expectations about

how the scene will unravel in different circumstances. Scripts index cases that provide

expectations about variations in a script. Cases can be specializations of MOPs or scenes;

they are the instances that show how the specifics of the situation vary from what is expected

in a significant way.

Schank does not present specific retrieval algorithms that use the memory structures

presented here. In the following section we will review a few systems [64, 50, 68] based

on his ideas that propose retrieval algorithms for memory structures like MOPs and TOPs.

Acquisition and forgetting of episodes is also not considered.

Another aspect not fully specified in the Dynamic Memory approach is the organi-

zation of such a memory. How are MOPs and TOPs organized such that retrieval is scalable

when the number of items grows?

Another important idea put forth by Schank is that retrieval and storage of memory

items is in fact the same process. This means that the same kind of memory processing

that happens when we remember something goes on when we store a memory. Thus, mem-

ory items are not stored in their ‘raw’ form, in isolation of other memory items, but are

processed and linked to other structures as a result.

To implement a system based on the ideas of dynamic memory, an adequate knowl-

edge representation formalism and an organization scheme are needed. We will adopt

Schank’s view that remembering is being caused by expectation failure while processing

new information and will propose a retrieval algorithm based on this. Building and updat-

ing memory structures will have to be incorporated into the retrieval algorithm.

2.2.2 Episodic Encoding in Soar

Soar is a computational cognitive architecture based on Newell’s ‘Unified Theories of Cog-

nition’ [85]. An episodic memory for Soar is described in [87], [88] and [89]. It proposes

14

solutions for all the functional stages proposed by Tulving: encoding, storage, retrieval and

usage of the retrieved episodes. The goal of this work is both to create episodic memories

for AI agents as well as to model human episodic memory. The model is architectural, in

the sense that episodic learning will be part of the underlying cognitive architecture and the

episodes will be available to all cognitive tasks. However, what is stored and retrieved will

be determined by the task at hand.

The authors identify as main challenges in building such an episodic memory sys-

tem the selection of cues based on which an episode is retrieved and the constraint that the

continually increasing number of acquired episodes imposes on retrieval time.

Episodes are based on the contents of Soar’s working memory and are stored as

rules, having as right-hand side the contents of the working memory. All features are po-

tentially used for retrieval. Storage tries to minimize memory size by reusing previously

seen instances. Episodes are stored each time an action is performed. Notably, there is no

organization among stored episodes.

2.3 Models of Episodic Retrieval

2.3.1 Feature Indexing

Indexing is the traditional solution to the problem of organizing items in categories. The

more features of an item are indexed, the more likely it is to be retrieved given one of its

features. At the same time, the space and computational effort required by the indexing and

retrieval processes grows with the number of indexed features. A common solution to this

problem is building manually a set of indexing features. This allows making use of domain

knowledge but limits the applicability of the approach. Automatically generating indices

tries to alleviate this problem.

15

Chef

Chef [50, 51, 52] is a case-based planner in the domain of Szechwan cooking. A case-based

planner differs from a planner that uses libraries of goals and plans, in that it uses episodic

memories of past experiences. These memories are used in multiple ways: successful plans

are modified to create new plans, failed plans are used to warn the planner of possible

problems and offer guidance in dealing with them.

In order to be able to store and retrieve relevant plans, Chef uses a discrimination

network to index successful plans by the goals they achieve and the problems they avoid,

and to index failed plans by the features that would predict them. Chef also explains why

previous plans succeeded or failed so that it can retrieve them when appropriate.

Chef addresses the problem of interacting plan steps that generate unwanted behav-

ior. It tries to anticipate such problems when planning for a goal, then searches for plans

that avoid the anticipated problems and satisfy as many of the initial goals as possible. After

the plan is built, it is run in a simulator. Successful plans are placed in memory indexed by

the goals they achieve. Failed plans are repaired by building a causal description of their

failure(s), and using this description to find repair strategies. After being repaired, the plan

is stored in memory, indexed by the goals it satisfies and the problems it now avoids. In

order for the planner to be able to anticipate problems before they arise, the planner has to

determine which features are responsible for a failure and to remember them.

The explanation of a plan’s failure is used to search a set of strategies for fixing such

failures. These strategies are organized in Thematic Organization Packets, each TOP being

indexed by the description of a particular type of planning problem and each organizing a

set of strategies that deal with that type of problem. Chef knows about five categories of

failures totaling about twenty failure types, all due to interactions between plan steps (e.g.

Side-Effect:Disabled-Condition:Concurrent - the interaction between two concurrent plans

causes a failure because a side-effect of one violates a precondition of the other). Each

such TOP organizes a set of strategies designed to repair the failure. TOPs are stored in a

16

discrimination network, indexed by the features of the explanations they correspond to.

Cyrus

Cyrus [64] is a computer program able to organize and retrieve a large number of events.

This work addresses the following questions: what are the processes for retrieving events

from memory, what memory organization do the retrieval processes imply, what are the

processes for adding new events to memory and how does memory change as a result of

adding new events.

Kolodner identifies some desirable characteristics of a long-term memory: retrieval

should not slow down significantly as new events are stored, and retrieval from any category

must be able to happen without enumeration. Indexing must be controlled so that memory

does not grow exponentially. Memory should keep track of the similarities among events in

a category, while indexing the differences between them.

In Cyrus, retrieval is a process of specifying and elaborating contexts for search.

Memory organization is based on categories (E-MOPs) for events. Each E-MOP contains

generalized information about its episodes and tree-like structures that index sub-MOPs

and episodes. Indexing is two-tiered, the first tier being the type of feature, the second the

values for that feature.

Search through memory is directed only to categories whose events are relevant

by employing retrieval strategies that expand query components, inferring relevant paths

through the memory structures. Retrieval starts with index selection (specification of path

to follow), the same indices being selected for both storage and retrieval. The process is

recursive and ends either with a retrieved event or when there are no more paths to follow.

If there are multiple paths to the target event, the shortest one is found. This traversal is a

breadth-first search which implements parallel traversal of all appropriate indices.

Retrieval of events with features that are both indexed and unique is accomplished

through traversal. It is more difficult to retrieve a target event with unindexed features or one

17

that does not specify a unique combination of features. The traversal process as described

above could continue if plausible indices are computed. This is the process of elaboration

that is given the target concept and the E-MOP that the target concept fits into, then tries to

better specify target concept features. For this purpose Cyrus uses instantiation strategies

like inferring participants to a diplomatic meeting by retrieving representatives of specific

organizations, members of known groups, representatives of known countries - in general

those entities most likely to have been participants.

Context construction is the process of selecting a category to start searching from.

Cyrus uses component-to-context instantiation strategies that employ information in the

query to infer plausible E-MOPs4.

Elaboration is not successful when not enough information is available. In such

cases Cyrus uses the fact that events occur in the contexts of other events and refers to

them. Thus, finding a related event and searching its context might help. Context to context

instantiation strategies are use to construct alternate contexts for search. For this process to

work, E-MOPs must specify the types of events they are related to and the relation between

them. This retrieval process trades speed for space. It is faster than enumeration but needs

more memory. It’s also less accurate than enumeration.

Indices should be discriminative and have predictive power. Organizing events ac-

cording to their differences from the norm does not burden the memory with unnecessary

redundancy and allows retrieval when the query contains the difference. Predictive features

tend to co-occur with others. These predictions are used during elaboration. Predictive

power of indices must be tracked as memory grows. When computing indices, Cyrus dis-

regards E-MOP norms and features known to be non-predictive.

Generalization is the process that builds the E-MOP’s norms and constrains index-

ing and creation of new E-MOPs, preventing combinatorial explosion of indices. The gen-

eralization process in Cyrus assumes the presence of a domain theory. Recovery from bad

4This is similar to feature to category remindings in Protos.

18

generalizations is more complicated as generalizations are norms and no events are indexed

by them.

Retrieval in Protos

Protos [95, 12] is an exemplar-based approach to knowledge acquisition for classification

tasks in weak domain theories. It attempts to reason with exemplars in a knowledge-based

rather than statistical fashion. Classification is performed by retrieving the most similar

prior case and predicting the new example to be of the same class.

Retrieval of the most similar prior exemplar is done in two steps: first, a set of

exemplars are selected based on their featural similarity with the new example. Features

are weighted by so-called reminding weights. The second step (called knowledge-based

pattern matching) is designed to improve these matches using domain knowledge. Two

features are considered equivalent if it can be shown through inference that they imply a

common feature.

The use of background knowledge in judging the similarity between a new situation

and a memory item is an important characteristic of Protos. Other systems like Cyrus or

Chef use only surface features in their similarity assessment. In our work, we want to

store and retrieve rich knowledge structures which will require a flexible knowledge-based

pattern matching similar to that in Protos.

Episode-Based Reasoning

Sànchez-Marrè et al. [102] propose Episodic-Based Reasoning (EBR) as an extension to

CBR in order to cope with dynamic or continuous temporal domains. Temporal sequences

of simple cases form an episode. Different episodes can overlap, thus having simple cases

in common. Cases use a flat representation, while episodes are organized using discrim-

ination trees. Sets of episodes considered to share an important pattern are grouped in

meta-episodes (called Episode Bases).

19

Retrieval proceeds in a top-down fashion, by selecting a meta-episode first and then

searching inside the corresponding episode-bases. Similarity of episodes based on their set

of events is computed by looking at each pair of corresponding events (simple cases), in

temporal order.

EBR addresses questions relevant to building an episodic memory module: how to

represent temporal sequences of events, how to organize and retrieve them efficiently, and

how to assess similarity between such episodes.

Related approaches also include the application of case-based reasoning technology

to experience management [7], where the intended target is either human (the experience

factory [6]) or machine (the lessons learned approach [125]).

2.3.2 Structural Indexing

The recent emergence of massive data collections consisting of complex structures (i.e.

labeled graphs) in domains like bioinformatics [15, 91] and chem-informatics [90] requires

database systems support for their efficient retrieval.

There are inherent limitations in existing database infrastructure that make graph-

based search techniques infeasible. The indices built on the labels of edges or vertices of

such graphs are usually not selective enough to distinguish among such complex structures

[132].

New research has focused on addressing these limitations and proposed methods

that fall into four categories according to whether they require matching full structures or

substructures and they kind of match they perform (exact or approximate):

full-structure search - finds structures that are exactly the same as the query structure

[16];

substructure search - finds structures that either contain the exact query graph (e.g. search-

ing for chemicals that contain a certain substructure) by or are exactly contained by

it (e.g. pattern recognition) [106, 114, 131];

20

full structure similarity search - finds structures that are similar to the query graph [93,

98, 126];

substructure similarity search - finds graphs that nearly match the given query by auto-

matically relaxing it up to a certain threshold; a filtering algorithm that can reduce the

number of candidate answers without performing graph-matching is proposed [132].

Given that it addresses the problem of scalable retrieval of labeled graphs using

approximate matching (called similarity search in the database literature), the work of Yan

et al. [132] seems the most relevant to our goal. We will summarize it below.

Substructure similarity search

The proposed filtering algorithm (called Grafil), transforms the structure-based similarity

measure into a feature-based measure and uses it to remove candidates whose similarity to

the query is below a threshold.

Given a database of graphs, a set of indexing features is computed by selecting the

most discriminative and frequent subgraphs [131]. These features are then used to index the

database of graphs, creating a feature-graph matrix index that stores the number of features

that appear in each graph.

Given a set of features, the filtering algorithm calculates the maximum number of

features that might be missing from a target graph if the query is relaxed by deleting or

relabeling one edge. All graphs that differ from the query by more than this are filtered.

Feature sets used in filtering are computed by clustering together features with sim-

ilar filtering power (defined as the frequency of the feature in the target graph compared to

that in the query graph). The resulted feature sets are applied sequentially by the filtering

algorithm.

Experimental results show that Grafil with feature clustering filters significantly

more of the database compared to just filtering using all features or using just using edge-

based filtering. However, this is true when the number of labels is relatively small (e.g

21

around 5); when this number grows (e.g. over 20), edge-based filtering performs nearly as

well.

An important aspect of substructure similarity search differs is that it is agnostic

with respect to the semantics of the graph labels. These labels act as hard constraints on

what edges or vertices match. For example, in matching two chemical structures, a node

representing a Carbon atom can only match another Carbon atom. Even though Grafil does

not perform matching per se, it is biased toward purely structural matching: it removes

certain candidates based on the absence of (structural) features. There are two kinds of

solutions to this problem: either allow the testing for the presence of a feature in a graph to

use label semantics or transform (i.e. relax) the given query using label semantics and use

the same test for feature presence.

Modifying the test for the presence of a feature in a graph to take into account

semantics means that a feature like [Carbon, bond, Carbon] will (imperfectly) match a

graph containing [Carbon, bond, Non-Metal]. Allowing such an imperfect match will affect

the relaxation ratio score, which will now have to take into account not only number of

common features, but also how well they match. Testing for feature presence will be more

computationally expensive. Also, an investigation is needed to ensure that the modified

algorithm does not filter useful candidates.

Relaxing the query using label semantics will change a query feature like [Carbon,

bond, Carbon] into [Carbon, bond, Non-Metal]. This will generate an exponential number

of relaxed feature queries, affecting the efficiency of the algorithm.

2.3.3 Analogical Retrieval

Analogical retrieval is relevant to our inquiry into building an episodic memory module

because it addresses the retrieval problem: how to retrieve relevant items from a memory in

a scalable fashion?

Analogy is the cognitive process of transferring information from a particular sub-

22

ject called the base (or source) to another particular subject referred to as the target.

Making an analogy requires an abstract mapping to be established between two

cases or domains based on their common structure (e.g. common systems of relations).

This may require re-representation of one (or both) of the domains in terms of the other one

(or in terms of a third domain) [63].

Analogy is an inference or an argument from a particular to another particular, as

opposed to deduction, induction, and abduction, where at least one of the premises or the

conclusion is general. A classical example of analogy is Niels Bohr’s model of the atom’s

structure that parallels the structure of the solar system.

Analogy plays a significant role in problem solving, decision making, perception,

memory, creativity, emotion, explanation and communication. It lies behind basic tasks

such as the identification of places, objects and people, for example, in face perception and

facial recognition systems [44]. It has been argued that analogy is ‘the core of cognition’

[54].

Analogy-making involves at least the following sub-processes [63]: representation-

building, retrieval of a base for the analogy, mapping this base onto the target, transferring

of unmapped elements from the base to the target, thereby making inferences, evaluating

the validity and applicability of these inferences, and learning from the experience, which

includes generalizing from specific cases and, possibly, developing general mental schemas.

There are, at present, no models that incorporate all these sub-processes, although individ-

ual models focus on one or, in some cases, several of these sub-processes.

Although computational models of analogy-making differ from our approach in that

they try to model human analogy making, they address some of the same problems one faces

when trying to build a memory module for an intelligent system: the retrieval of complex

structures (i.e. memory items) in a scalable manner. We will examine from this perspective

some of the most important analogy models.

23

The Structure-Mapping Engine

Arguably the most influential model of analogy-making is the Structure-Mapping Engine

(SME) [43]. It describes the implicit interpretation rules of analogy and claims that analogy

is characterized by the mapping of relations between objects, rather than by attributes of

objects, and that those relations mapped are dominated by higher-order relations that belong

to the mapping. These rules have the property that they depend only on syntactic properties

of the knowledge representation and not on its contents.

MAC/FAC

MAC/FAC [40] is a model of similarity-based retrieval that tries to capture the psycholog-

ical phenomena observed in human analogical reminding. It tries to account for the fact

that people are extremely good at judging similarity and analogy when given two items to

compare, that superficial remindings are much more frequent than structural ones, and that

people often experience and use purely structural analogical remindings.

The retrieval model proposed by MAC/FAC consists of two stages, hence the name

- ‘many are called, but few are chosen’. The first stage (called MAC) uses a computationally

cheap process to select the potential candidates from all the memory items. The selection

is based on an estimate of the similarity between the input and memory items, computed

as a dot product between their respective vector representations. The second stage (called

FAC) uses the Structure Mapping Engine to compute the similarity between such two items

based on their structural similarity.

Having two stages in the retrieval process is a known solution to preserve scalability

[13]. MAC/FAC uses ‘numerosity’ - the number of local matches (e.g. number of relations

of type implies) between a probe and a memory item as a computationally cheap way of

assessing their similarity. The surface similarity between the probe and all memory items

is computed in this manner. The MAC selector filters all these match results so that items

that are not within 10% of the best match are removed. The FAC stage takes the selected

24

set of memory items and computes their structural similarity with the given probe. The

complexity of the FAC stage is O(N2), where N is the number of items in the base or

target.

MAC/FAC is able to account for several patterns of access exhibited by human

subjects [40]. More importantly, it provides a scalable retrieval mechanism for a memory

of complex structures.

Some of MAC/FAC’s shortcomings include the fact that memory items are not con-

nected to one another. To be useful as an episodic memory retrieval strategy, a scheme like

MAC/FAC would need to be coupled with a mechanism that learns from prior analogies, be

they good or bad.

Other Models

There are a number of other symbolic models of analogy-making5. Derivational-analogy

[22] proposes that the analogy be drawn not with the final solution of the old problem, but

with its derivation. That is, the important piece of experience in the prior case is not in its

final solution, but in how it was reached. This approach was further developed by Veloso

[122].

2.3.4 Spreading Activation

Spreading activation [8] is a method for searching semantic networks by labeling a set of

source concepts with weights or ‘activations’ and then iteratively propagating or ‘spread-

ing’ that activation out to other concepts linked to the source concepts or their children.

Most often these ‘weights’ are real values that decay as activation propagates through the

network. When the weights are discrete this process is often referred to as marker passing.

5For a comparison see [49].

25

Retrieval in SOAR-EM

Retrieval in Soar-EM is deliberate, with the cue being provided by the system that uses

the retrieved episodes. The system uses spreading activation to retrieve a set of potential

candidates from memory. The cue is then compared serially with all candidate memory

items and the best-matching episode is retrieved.

Two retrieval algorithms and episodic memory structures have been presented:

instance-based which stores individual episodes and interval-based which groups episodes

based on ranges for different values in their description.

The complexity of the instance-based retrieval is O(nm) where n is the size of the

retrieval cue and m the number of episodes that share a common feature with the cue (the

memory size in the worst case). Interval-based retrieval complexity is O(n2l) where n is

the size of the cue and l is the average number of intervals in each node of the working

tree. For both these retrieval algorithms, the authors report a linear increase in retrieval

time with memory size, with the interval-based one being 15% faster and requiring only

25% of physical memory compared to the instance-based.

Context Sensitive Asynchronous Memory

The context-sensitive asynchronous memory [58] addresses the problem of retrieving useful

answers from large knowledge bases given under-specified questions. The goal is to obtain

this information without knowing how to ask the right questions when exhaustive search is

not feasible.

It provides a model of memory retrieval that exploits feedback from the task and

environment to guide memory search by interleaving memory retrieval and problem solv-

ing.

Memory is a semantic network and retrieval is done through spreading activation

similar to the declarative portion of the ACT architecture [9]. The context-sensitive asyn-

chronous memory approach builds upon this foundation, but differs in the following re-

26

spects: relations in the semantic network are also nodes, the spreading activation process is

context sensitive, in that the activation of relation nodes alters the propagation of activation;

it maintains a set of active retrieval requests which it constantly and incrementally attempts

to satisfy. These features enable the system to focus its search effort on those parts of the

knowledge base likely to be relevant while interleaving search with other processes, and

allowing updates to the search with new information obtained through reasoning.

This approach has been applied to pure memory retrieval, planning, story under-

standing, and information retrieval.

2.4 Models of Episodic Storage

2.4.1 Models of Forgetting

Forgetting - preventing recall of episodes or portions of episodes - is an important aspect of

memory maintenance. Forgetting can be attributed to the loss of the actual memory item or

to the inability to recall it.

Cognitive Models of Forgetting

Empirical studies show that the decline in human memory performance with time or inter-

vening events can be accurately described by a power function [11, 128, 129, 130].

The decay of memory performance can be attributed to two factors: decay of unused

information or interference of new and old information. Tulving [119] argues that newer

memories prevent the recall of older ones.

Pragmatic Models of Forgetting

The mechanism of forgetting has been employed in case-based reasoning systems in order

to deal with an increasing number of stored cases.

27

Kibler and Aha [61] propose two techniques to reduce the number of exemplars

stored by an instance-based classifier without seriously affecting the accuracy of a system.

The growth algorithm stores new instances only if they were incorrectly classified. The

shrink algorithm stores all instances as exemplars in the first phase and then tests to see

whether each instance, in turn, can be correctly classified. Those that can are removed.

Smyth and Keane [110] show that while traditional deletion policies can manage

effectively the growth of the case-base from a performance standpoint, they may lead to

competence degradation in many CBR systems. The proposed solution uses a model of case

competence that guides the acquisition and deletion of cases. Cases are divided into pivotal

cases that give the system its basic competence and auxiliary cases that only contribute to

performance.

The footprint deletion strategy orders the cases by their utility and chooses first

auxiliary cases to delete. If pivotal cases are to be deleted, those that can be solved by the

most number of other cases are chosen first, thus minimizing impact on competence. This

policy only takes into account competence, disregarding performance.

The footprint-utility deletion strategy is intended to deal with the performance as-

pect. It takes into account the utility of a case when considering it for deletion.

Episodes are more complex than simple cases in that they are intended to encapsu-

late much more knowledge and be relevant in various situations that cannot be anticipated

at storage time. In this case, the decision of whether to store a new episode is more compli-

cated.

2.4.2 Memory Reorganization

Besides forgetting (i.e. removing items from memory), an agent can also reorganize its

memory during the course of its functioning. Such a reorganization can be performed pe-

riodically (either based on time or on the number of instances organized by a memory

structure like in [64]) or be triggered by failure. In this case, the system recognizes failure

28

as an opportunity to learn.

Protos [12] falls into this latter category. Upon failure (i.e. making a wrong clas-

sification) it does two things: first, it decreases the reminding weights responsible for the

wrong prediction. This is common in most learning systems. The second and more inter-

esting thing it does is the creation of difference links - links between the failed and correct

exemplars, labeled with the differences between the two. These links are used during classi-

fication to suggest other exemplars for consideration. Effectively, Protos is creating another

indexing structure that links exemplars. This indexing structure is localized - it is accessible

only from the linked episodes - and knowledge rich - encoding the full set of differences

between the failed and correct episodes. Traversal of such a difference link is done only

when all features of a new case match those in the link. For more complex representation

formalisms (e.g. conceptual graphs), new algorithms for synthesizing such difference links

and deciding when to traverse them will need to be devised.

2.5 Episodic Memory Uses in Intelligent Systems

Arguably, episodic memory capability is a central part of human intelligence and any sys-

tem that tries to reproduce human-level intelligence or implement super-human intelligence

would need to have such capabilities. This section reviews work on the uses of episodic

memory in intelligent systems and its potential benefits.

Nuxoll and Laird [89] put forth a comprehensive list of cognitive capabilities that

an episode memory might support. They include:

sensing : determining the familiarity of a situation (including noticing novel situations and

detecting repeated sensing of the same situation) and recalling useful information

from a previous situation (they call it virtual sensing).

reasoning : action modelling (learning the immediate effects of actions), environment

modeling (learning how the world changes independent of the agent’s actions), pre-

29

dicting the success/failure of actions, managing long term goals.

learning : retroactive learning (e.g. when no longer under time constraints), reanalyz-

ing knowledge (in the light of new information), and explaining behavior (e.g. by

episodic replay)

Mueller [80] proposes that study of daydreaming - the spontaneous recall of past or

future (i.e. imagined) experiences. The author postulates the important roles daydreaming

plays in human cognition including: plan preparation in anticipation of future situations,

plan rehearsal by imagining situations and how a plan would unfold in those situations,

learning from failures and successes by recalling past experiences, support for creativity

e.g. by generating fanciful possibilities that can lead to the discovery of novel solutions to

a problem.

In the proposed computational theory of daydreaming stored episodes are used to

reduce the need for search in the future and to increase knowledge accessibility.

2.5.1 The Basic Agent

One of the few episodic memories integrated into an intelligent agent is described in [124,

123]. The Basic Agent is an attempt to create a conscious, mind-like AI artifact functioning

in a simulated dynamic environment. The agent uses planning and replanning, reasoning,

action execution, limited natural language understanding and generation, symbolic percep-

tion, episodic memory and reflection.

It employs two episodic memories: one for managing the dialog with the user and

one for guiding the planner subsystem. Memories alone do not do anything; a reflection

process is necessary to process episodic memory and perform abstraction, forgetting, loop

recognition, etc.

The episodic memory inside the natural language module contains a set of realizers

- daemons that recognize concepts at a higher level of abstraction than raw episodes (e.g.

‘reach’ = change of location where the current location is that of a known object; ‘return’

30

= change of location to a previously known one; ‘pass’ = change of location where the ref-

erence object lies between the origin and destination). There is also a repetition recognizer

that picks up repeated actions. General world knowledge is stored in the same module with

episodic memory, since the mechanisms used for both are similar. The stored episodes are

rather primitive and are only used to generate descriptions of the agent’s actions.

The second episodic memory is used to guide the functioning of the planner. In

case there is an impasse in planning, the system begins selective backtracking, using the

episodic memory. All planning events are recorded here, allowing the control to retreat to a

prior decision point to resolve the problem.

The basic agent was implemented as a simulated robot submarine operating in a

two-dimensional world about which it has only partial knowledge. It responds to natural

language commands using a vocabulary of about 800 common English words by invok-

ing its temporal task planner to synthesize a plan, which is then executed. The agent can

form and retain compound future plans, and re-plan in response to new information or new

commands. No evaluation of its performance of these tasks was carried.

2.5.2 Soar EM

The Soar system was extended to incorporate an episodic memory [87]. Retrieved episodes

are used to guide action selection by providing an evaluation of alternative actions. This

was tested on a simple grid-world [87] in which the agent can move in four directions,

each cell having an associated value. The purpose of the system is to maximize the score,

computed as the sum of the values of cells traveled. The agent does not know how its

actions move it through the world or their associated value. The system uses episodes as

knowledge to help the agent travel in this world. An agent with an unbiased match function

(i.e. number of features matched) quickly achieved better than random performance but

did not improve beyond that as the number of episodes increased. The authors blame the

irrelevant features used as cues. Using an activation-biased matching function [88] showed

31

a significant improvement over the unbiased match.

In a more recent implementation [89], the Soar episodic memory is used to extend

the cognitive capabilities of the agent along several dimensions. Experiments in a domain

called TankSoar (similar to the grid world in the previous implementation) was presented.

Nuxoll and Laird show that an episodic memory contributes to the improvement in perfor-

mance in:

• action modeling: the agent learned to predict the immediate outcome of its actions;

• virtual sensing: the agent can recall details from a past situation that might be relevant

to the current situation (e.g. where an energy source was encountered);

• learning from experience: the agent learned tactics in the given domain, outperform-

ing a hand-coded agent. It learned to predict the enemy’s actions as well as valuable

attack tactics (e.g. back away after firing).

The retrieval time in Soar EM grows linearly with memory size. To address the

scalability issue posed by this the authors determined the maximum number of episodes

that the system can effectively process and restricted the use of episodic memory to only

those problems that meet that limit. This is similar to the ‘scaling up by dumbing down’

approach [79].

Extensions to the system to more complex tasks (like repetition detection, goal

tracking) and domains will require reducing the size of memory in order to accommodate

episode complexity. Future experimental evaluations will need to investigate how this will

affect performance on the given task.

Computing similarity between episodes encoding complex knowledge will have to

be addressed. The semantics of instances appearing in an episode will need to be considered

during this process.

32

2.5.3 ISAC

Dodd [35] developed a memory system for a cognitive robot (ISAC), including both short-

term (e.g. storing perceptual information) and long-term memories (storing information

obtained from past experience). The long-term memory system is divided into procedural,

semantic and episodic memories.

The Episodic Memory is intended to provide the robot with the ability to learn from

past task performances. An Episode corresponds to the time period over which the goal of

the robot does not change. Episodes are represented using the agent’s semantic memory.

Retrieval is based on ’the rational approach to memory design’ of Anderson [10] which

tries to balance the benefits of retrieving a memory unit against the costs of this operation.

The probability that a previous episode is relevant is based both on the current context as

well as on its history (i.e. emotional salience, age). The retrieval algorithm is linear in

the number of stored episodes, just like Soar-EM. Memory decay is incorporated into this

framework and a memory item is removed when its history value decays past a certain

threshold. Episodes have a flat structure and are stored in a traditional database.

While the authors present some small scale experiments showing how each memory

module accomplishes a few individual tasks, a more extended evaluation showing whether

having such memory modules improves the performance of the robot on a given set of tasks

is needed.

2.5.4 Temporal Sensorial Information

The Wearable Remembrance Agent

Rhodes [99] developed a wearable agent that continuously stores the wearer’s context re-

ceived from various sensors and reminds the wearer of potentially relevant information

based on his/hers current context. For example, while attending a conference the context

might include the name of the speaker, the location of the talk, names of persons sitting

nearby; the suggestions in this context are papers related to the one currently being pre-

33

sented, when the wearer last met the speaker, etc.

Potential benefits of such an agent include: availability of useful or supporting in-

formation relevant to the current task, contextualization of the current task in a broader

framework, retrieval of information that leads to the discovery of useful information.

Temporal Case-Based Reasoning

More recently there has been a lot of interest in the CBR community in incorporating tem-

poral information in the stored cases.

Ram and Santamaria [96] recorded raw data from prior actions to improve navi-

gation. Cases consist entirely of quantitative data and do not have clear boundaries. The

stored cases are similar to episodes in that they have a temporal extent, the agent having to

determine when and what to store. Memory size is kept fixed by merging the most similar

two cases when needed. A matching process can use multiple such contiguous cases. The

system improved its navigation performance by using the stored cases in an action modeling

approach.

Ma and Knight [75] propose the a framework for historical case-based reasoning

(HCBR). They argue in many CBR systems including prediction, explanation, planning,

etc. the history of cases, rather then distinct episodes, are important. Their approach is

based on a general temporal theory that allows both time instances and intervals as prim-

itives elements. The framework uses fluents (propositions whose truth values depend on

time), elemental cases (collections of fluents), and case histories (sequences of cases).

Similarity for case histories is defined as having two components: non-temporal

(based on elemental cases) and temporal (based on the graphical representation of the tem-

poral references using traditional graph similarity measurements).

34

2.6 Episodic Memory vs. Case-Based Reasoning

Case-based reasoning [2] is the process of solving new problems based on the solutions of

similar past problems. Computational approaches to episodic memory and case-based rea-

soning systems share not only similar goals, but also a common ancestry: Schank’s model

of dynamic memory [104] was the basis for the earliest CBR systems (e.g. Kolodner’s

CYRUS [65] and Lebowitz’s IPP [69]).

However, Episodic Memory and Case-Based Reasoning differ in significant ways

[67].

The most important difference between them is that, usually, episodic memories

are part of a larger system (e.g. Soar EM is built on top of the Soar cognitive architecture),

whereas most CBR applications are standalone applications. Episodic memory research fo-

cuses on building models or storage and retrieval and leaves adaptation of retrieved episodes

to other components of the overall system. CBR systems address the adaptation problem as

both performance and competence at the given task depend on this.

Episodic memory retrieval and adaptation is used in conjunction with other reason-

ing mechanisms (e.g. Soar EM uses the chunking mechanism in Soar to store and retrieve

episodes), whereas case reuse and adaptation is the primary reasoning mechanism.

Episodes are multifunctional in that they can be used for a variety of tasks like im-

proving performance, improving competence, generating explanations, learning, etc. Cases

have usually more restricted, domain-dependent uses, like action selection, problem solv-

ing, etc. The architectural constraints imposed by these differences will be explored in the

next chapter.

2.7 Chapter Summary

In this chapter we looked at the basic characteristics of human episodic memory, how it dif-

fers from the semantic memory and what its main functions are. We also examined different

35

models of episodic encoding, retrieval and storage and how different systems use episodic

memories in their functioning. Each of the examined systems exhibits some desirable char-

acteristic(s) of a memory system; however, no single system has them all.

Even though a number of intelligent systems use memory in their functioning only

a few employ an episodic memory per se. Those that do [64, 50, 124, 88, 35] embed the

memory module inside the system that uses it, making it hard to port to other systems and

to study its effect to the system’s overall task.

Unlike these approaches, we propose to build a memory module that is separated

from the host system. This should both allow research to focus on memory organization

issues in isolation of the system using the memory module and simplify the overall design

of the system. To achieve this separation, we need to devise an interface through which

memory will interact with the system and a generic representation of events.

The set of tasks an intelligent systems accomplishes grows in size and complexity

every day. A memory module for such an intelligent system needs to be able to deal with the

complex experience acquired in the process and use it for different reasoning tasks, some of

them unanticipated at the moment they were stored. Simple vector representation schemes

are not able to do this, but structured representations need to be employed. Flexible storage

and retrieval mechanisms for these representations need to be devised. Indexing schemes

that capture similarities in context need to be developed.

The life expectancy of intelligent systems grows as well. This adds another dimen-

sion to the task of building a memory module: scalability. Scalable retrieval mechanisms

are needed. Serially searching large memory structures is not feasible.

Detailed evaluations of the benefits and costs associated with using an episodic

memory in a system in different domains and for different tasks need to be carried out.

36

Chapter 3

A Generic Memory Module for

Events

3.1 Motivation

A lot of today’s intelligent systems do not use past experience in their functioning. Take,

for example, Project Halo [57] whose goal is to develop tools that would enable subject

matter experts to convey their knowledge (i.e. concepts, relations, procedures) in various

domains to an intelligent system. These systems are intended to answer AP-level questions

in those respective domains (e.g. chemistry, physics, biology).

A student preparing to take the AP test on a particular subject would also learn

domain concepts, relations and procedures. In addition, he/she would also solve some AP-

style questions and use those learned concepts in context. Subsequently, the student will be

able to recall these experiences and use them for various purposes like:

goal tracking - assessing whether they have covered all the material in the syllabus,

solution adaptation - solving similar problems by adapting previous solutions,

failure avoidance - avoiding getting stuck in solving a problem using the wrong concepts

37

by noticing similarities between the current situation and a previous failure.

Being able to store and reuse past experience can enable an intelligent system to

accomplish these tasks as well. However, relying just on experience will not achieve a

broad coverage in terms of types of tasks: experience needs to be used in conjunction with

other reasoning mechanisms. That is why we need the ability to add episodic memory

functionality to intelligent systems.

3.2 The Need for a Generic Memory Module

Today’s knowledge-based systems are complex software applications and the ability to de-

velop them in a modular fashion, using generic, reusable components is essential. This

requirement is even more stringent given the growing complexity of the tasks they achieve

and the increase in their expected life-span.

This need for generic modules in the development of knowledge-based systems has

long been recognized. For example, E-MYCIN [120] employed a reusable inference engine

and separated domain specific knowledge (i.e. rules) from it.

We propose to separate the episodic memory functionality from the system using it

and build a generic, reusable memory module that can be attached to a variety of applica-

tions in order to provide this functionality [115, 117].

The development of such a generic, reusable memory module will allow easy porta-

bility to different systems and applications. It could enable systems that were not designed

to rely on a memory system to benefit from it, requiring only minimal changes. Separating

memory functionality from the system that uses it should also reduce the overall complexity

of the system since it will not have to be concerned with this any more.

Having such a reusable memory module should allow research to focus on the

generic aspects of memory representation, organization and retrieval and its interaction

with the external application.

38

Separating the memory module from the application requires several things: the

interaction between memory and the application has to be channeled through a well-defined

and flexible interface and memory has to be able to represent, organize and retrieve a wide

variety of events in a wide variety of contexts.

An external application using such a generic memory module will use the retrieved

memories differently, depending on their task. It is important to note that we do not propose

a generic problem-solving solution for such tasks as this would require domain specific

knowledge (e.g. for adapting prior experience); rather, the episodic memory module will

have a supporting role in problem solving, providing access to prior experience that might

be useful in the current context.

3.3 General Memory Requirements

We separate the memory requirements into two categories: internal, that any memory

should satisfy, and external, related to their interaction with external applications.

In this section we look at general memory requirements using Tulving’s list of mem-

ory functions [119] (see also Section 2.1.3). Next section will examine application-level

memory requirements.

3.3.1 Encoding Requirements

A generic memory module will have to represent a wide variety of episodes. These episodes

will need to be organized in memory structures such that they can be retrieved when needed.

Therefore, a generic memory module needs to provide:

a generic representation of events that can be used with different types of events (e.g.

different temporal extent, different granularity of representation, incorporating qual-

itative as well as quantitative knowledge, causality, temporal as well as spatial infor-

mation), in different domains (e.g. planning, problem solving)

39

a domain independent organization of these events that supports flexible retrieval; given

that such a generic memory needs to be able to retrieve episodes based on variety of

queries, unanticipated at storage time, the memory organization needs to allow any

piece of knowledge encoded in an episode to be a retrieval cue.

3.3.2 Storage Requirements

Memory should be able to store a large number of episodes, acquired during its functioning,

and do so efficiently. Removing episodes to maintain memory size manageable can be

employed, but the costs of doing so need to be taken into account.

efficiency - memory should provide efficient storage; one way to operationalize this re-

quirement is to require a constant (or almost constant) storage time. In this case the

system might need to revisit the stored memories in order to better integrate them into

the overall memory structure.

scalability - memory should be able to accommodate a large number of episodes without a

significant decrease in performance. As the intelligent system matures, it will acquire

more experience that needs to be stored. The importance of scalability grows with

the life expectancy of the system.

competence preservation - any forgetting strategy used should preserve the competence

of the system within some specified bounds. Forgetting past memories is one way to

maintain a certain memory size, but it has to take into account the cost in terms of

competence lost through forgetting.

3.3.3 Retrieval Requirements

The retrieval algorithm of a generic memory module for events should have the following

characteristics:

40

accuracy - memory should return experiences relevant to the situation at hand. For ex-

ample, given a planning problem, memory should return similar planning problems

from memory.

efficiency - memory should provide fast recall of stored items. Efficiency is concerned

with the retrieval time, in isolation of memory size.

scalability - the number of stored episodes should not directly affect retrieval efficiency.

This requirement concerns the increase of retrieval time with memory size. The im-

portance of scalability grows with the life expectancy of the system.

content addressability - memory items should be addressable by their content. This re-

quirement is meant to allow the external application to formulate flexible queries.

flexible matching - memory should recall the correct previous episodes even if they only

partially match the current context.

3.4 Application Requirements for a Memory Module

Given that such a generic memory module is intended to be implemented as a stand-alone

application, it needs to provide a clean but flexible programming interface (API) that exter-

nal applications can use.

When dealing with complex knowledge structures, the results of querying memory

are as important as an explanation of why they were retrieved (e.g. how the query was

judged to be similar to the retrieved memory items). This similarity might not be obvious

from the retrieved items alone.

3.4.1 A Flexible Interface

The interface implemented by the memory module needs to be flexible so as to allow various

types of queries to be formulated. For example, a surveillance agent might query memory

41

with a sequence of actions and request prior plans that are similar to the observed sequence

of actions. In contrast, a planner might use the description of a planning problem in order

to retrieve a prior planning episode.

Given our goal of building a memory that can be attached to a variety of applications

solving different tasks, it is important not to restrict the types of queries allowed by this

interface.

3.4.2 Explaining the Retrieved Results

The match between a query and a memory item is complex: e.g. it might be partial, it might

use semantic information or transformation rules to resolve mismatches between the query

and a memory item. Therefore, besides the actual query result, memory needs to provide

feedback to the application on how such a query matched a memory item.

This feedback might include what part of the query matched the memory item, what

part of it did not, what part of the memory item matched the query, what part did not, and

the set of correspondences (i.e. mappings) between the query and the memory item.

Such knowledge could be used by the external application in accomplishing its task.

For example, a planner that calls memory with the description of a new problem could use

the matched part of the query to assess the effort required to adapt the retrieved plan and

the set of correspondences as a guidance for the adaptation process.

3.5 An Analysis of SOAR-EM

Given that Soar-EM [88] (see also Section 2.3.4) is the most similar attempt to build a

generic episodic memory module, we will examine how it fares with respect to the set of

requirements presented here.

In terms of encoding, Soar-EM uses a generic episode representation (i.e. rules) and

a domain independent organization of episodes (i.e. a list of either episodes or intervals).

42

Episode storage is efficient: for the instance-based representation it only requires

linking to the elements in the working memory tree, an operation independent of mem-

ory size, while for the interval-based storage it requires a search through memory to find

the appropriate intervals to store this episode; this operation is dependent on memory size.

The two organization schemes provide a trade-off between memory size and scalability:

instance-based storage is efficient but not scalable, while interval-based storage reduces the

memory size at the expense of increasing storage time. There is no forgetting strategy -

rather, the authors adopt the reverse strategy, by limiting the complexity and size of prob-

lems tackled to only those that can be solved given the maximum memory size that can

currently be stored.

Retrieval seems accurate (using memory improves performance on three different

tasks), but in the worst case is linear in the number of stored memory items. Memory items

are content-addressable, but the matching algorithm does not take into account semantic

information and cannot handle mismatches between the cue and memory items.

3.6 Chapter Summary

In this chapter we argued that intelligent systems need to use memory in order to be able

to track their long-term goals, avoid failures and solve problems by adapting previous solu-

tions. Adding episodic memory functionality to such systems should be done in a modular,

reusable way.

We propose separating the episodic memory functionality from the system, and

implementing it as a generic memory module that can be attached to various applications.

Benefits of such a separation include increased portability, a reduction in the complexity of

the overall system as well as allowing research to focus on studying memory organization

and retrieval in isolation of a specific system.

We presented a set of requirements that any memory module should try to follow.

General memory requirements include providing a generic encoding and organization for

43

events; efficient, scalable and competence preserving storage; accurate, efficient, scalable

and content-addressable retrieval. At the application level, such a memory module should

provide a flexible API to external systems.

The next chapter will present our proposed implementation of such a generic episodic

memory module.

44

Chapter 4

An Implementation of a Generic

Memory Module for Events

In this chapter we present our proposed implementation of a generic memory module. We

look at the implementation choices made for each of the three episodic memory functions

(encoding, storage, and retrieval) as well as the programming interface provided to external

applications.

4.1 Episodic Encoding

4.1.1 Episode Determination

An episode is the basic unit of information that memory operates on. The decision on what

constitutes a meaningful episode is domain dependent and is left to the external application

to make. In general, an episode is a sequence of actions with a common goal, which,

typically, cannot be inferred from the individual actions taken in isolation.

45

4.1.2 Episode Representation

A generic episodic memory needs to have a representation for a generic episode. Episodes

are dynamic in nature, changing the state of the world in complex ways. Besides a sequence

of actions that make up the episode, the context in which an episode happens as well as its

effect on the world are important. We propose that a generic episode have three dimensions:

context, contents and outcome.

Episode Dimensions

Context is the general setting in which an episode happened. In a planning application the

context might be the initial state and the goal of the episode (the desired state of the

world after the episode is executed).

Contents is the ordered set of events that make up the episode; in the case of a planner,

this would be the plan itself.

The outcome of an episode is an evaluation of the episode’s effect (e.g. if a plan was

successful or not, what failures it avoided).

The idea of indexing episodes based on the different kinds of information encoded

by them is not new: e.g. Chef [50] indexed plans both by their goals and by their failures

and Episode-Based Reasoning [102] encodes a problem description, a solution-plan and a

solution-evaluation in an episode, similar to our three dimensions.

The separation of an episode into these dimensions is left to the application using

memory. We therefore assume the memory module receives an already partitioned episode

for storage or retrieval.

Knowledge Formalism

The knowledge formalism used to represent the episodes is the Component Library (re-

ferred to henceforth as CLib) [14]. It is an upper ontology of composable concepts, con-

46

sisting of about 700 general concepts such as Transport, Communicate, Enter,etc.

These concepts are related to one another using 80 binary semantic relations such as agent,

object, causes, size [14]. A knowledge base in this formalism can be thought of as

a set of triples, where each triple consists of two frame instances connected by a relation.

We make the assumption that an application using the proposed memory module

is sharing an ontology with the memory module. This can be achieved by the external

application adopting the upper ontology provided by CLib and extending it with domain

specific concepts and relations. This does not conflict with our goals of building a generic

memory module as there is nothing in the current implementation of memory that prevents

it from working with a different ontology, as long as it provides inheritance and can be

translated into a triple format.

Episodes as Sets of Triples

An Episode is represented in our knowledge formalism as a collection of instantiated frames

linked by relations. Usually there does not exist a reified concept corresponding to an entire

episode.

Another way to look at an episode is to view it as a conceptual graph [111], where

nodes are instances of frames, and edges connecting them are relations. The three dimen-

sions institute a partition on this graph.

The semantics of frames and relations is defined by the CLib. In this way a direct

connection between Episodic Memory and Semantic Memory (i.e. CLib) is established.

For example Figure 4.1.2 depicts graphically describes a planning problem

(called *Package-Deliver1)1 in the Logistics domain [122] involving the delivery of a

package (called *Package5) from a post-office (called *Post-Office6) to another one

(called *Post-Office2). Both post-offices are located in the same city (called *City7),

1A note on representation: we use a triple notation with the following properties: each triple has the form

(instance-1 relation instance-2); a star in front of a name means the name refers to an instance of

the class with that name; in order to distinguish between different instances they have been numbered.

47

Figure 4.1: Graphical representation of a planning problem description from the Logistics

domain

which contains another post-office *Post-Office4. Figure 4.2 shows the same planning

problem represented as a set of triples.

Benefits of Episode Representation using Different Dimensions

We propose using these three generic dimensions for episodes and show that retrieval along

one or more of these dimensions allows the same memory structure to be used for various

memory-based tasks. For example a memory of plan goals, their corresponding plans and

the results achieved by a given plan can be used for tasks such as:

planning - devise a plan (i.e. a sequence of actions) to accomplish a given goal. In terms

of our representation, this corresponds to memory retrieval using episode context (i.e.

initial state and goal of a planning problem) and adapting the contents of the retrieved

episodes (i.e. their plans).

48

(*Package-Deliver1 destination *Post-Office2)

(*Package-Deliver1 trucks *Truck3)

(*Truck3 location *Post-Office4)

(*Package-Deliver1 object *Package5)

(*Post-Office6 is-inside *City7)

(*Package5 location *Post-Office6)

(*Post-Office2 is-inside *City7)

(*Post-Office4 is-inside *City7)

Figure 4.2: The same planning problem from the Logistics domain represented as triples

(Package-Deliver destination Post-Office)

(Package-Deliver trucks Truck)

(Truck location Post-Office)

(Package-Deliver object Package)

(Post-Office is-inside City)

(Package location Post-Office)

Figure 4.3: The set of remindings for the above planning problem

classification - determine whether a goal is solvable given a state of the world. This cor-

responds to retrieval based on episode context and using the outcome of the retrieved

episodes (i.e. their success) for classification.

episode recognition - recognize a prior episode (or one similar to a prior episode) being

executed. This corresponds to retrieval based on episode contents (i.e. observed

actions) and adapting the context of retrieved episodes.

The semantics of individual actions (e.g. their applicability conditions and goals

they achieve), as well as knowledge about the state of the world is represented using the

concepts and relations in the CLib.

49

4.2 Storage

4.2.1 Memory Indexing

Episodes are stored in memory unchanged, with no generalization, and are indexed for

retrieval. We have adopted a multi-layer indexing scheme similar to mechanisms found in

systems such as: MAC/FAC [40], Börner [21] and Protos [95]:

a shallow indexing step in which each episode is indexed by all its feature types taken in

isolation. The shallow indexing is meant to quickly select a set of episodes that might

be relevant for the current query. The most promising ones will be inspected closer

to determine their similarity with the given query.

a deep indexing step in which episodes are linked together by how they differ structurally

from one another. It provides access to additional episodes that were relevant in

similar situations in the past.

Shallow Indexing

The shallow indexing scheme indexes an episode separately on each of its three dimen-

sions: context, contents and outcome. For each such dimension, a set of generalized triples

called remindings is computed by generalizing the two nodes in each triple to their re-

spective types. Duplicate generalized triples are ignored. Figure 4.3 list the remindings

corresponding to the planning problem in Figure 4.2.

Triple generalization discards the structural information contained in an episode by

replacing instances with their respective types. This structural information will be consid-

ered during the second step of the retrieval process, the semantic matching phase. Triple

generalization is fast (the type info is usually contained in the episode representation) and

allows for fast comparison between two generalized sets of triples.

We define the reminding-weight as a measure of how discriminative the reminding

is. This weight is computed as the inverse of the number of episodes that are indexed by the

50

given reminding:

reminding-weight(rem) = 1 / |reminded-episodes(rem)|

The shallow indexing step is similar to the MAC stage of MAC/FAC retrieval model

[40]. MAC computes a content vector for each memory item by computing how many re-

lations of each type appear in that memory item. There are however important differences:

the approach we propose takes into account the types of arguments for those relations and

disregards their number, while MAC considers only relation types and their number, disre-

garding the types of their arguments.

Both these approaches seem to fit their purpose: MAC is intended to retrieve ana-

logical matches, where the set of relations is important while their arguments might be very

different (e.g. planet and electron in the classical analogy of the atom as the Solar system);

our shallow indexing scheme is intended to select the most similar prior episodes (which

prefers matching types for relation arguments), not necessarily intricate analogies.

A possible extension to this indexing scheme is to generalize a triple beyond just the

types of its two instances, by looking at a fixed number of their superclasses and subclasses.

This has the advantage of matching potentially more diverse triples in the input, at the

expense of increased memory size and retrieval time. More specifically the number of

such generalized triples will be proportional to the square of the number of considered

superclasses/subclasses, while retrieval time will increase due to the increase in number of

triples used to query memory and the number of indices in memory. If we generalize a

triple to all its superclasses/subclasses, this algorithm becomes the MAC stage without the

counting of relations. We chose not to implement this extension due to its negative effects

on performance.

We have, however, implemented a less selective indexing scheme (and more gen-

erous in selecting potentially useful episodes) that only looks at the types of the instances

in each triple, disregarding the relation. This was implemented as a fall-back for the case

when the original reminding scheme does not return any episodes. The intuition is that

51

similar episodes are more likely to share an instance of a certain type than two instances

of different types. If such an instance is shared, the relations involving it are likely to be

similar as well.

Remindings are stored in a hash-table and matching is exact.

Indexing based on remindings is quite similar to the edge-based indexing in sub-

structure similarity search [132] (see also Section 2.3.2). Edge-based indexing can be

viewed as a degenerate case of feature-based indexing using a filter with single edge fea-

tures. Yan et al. [132] show that when the number of graph labels (i.e. nodes and edges)

grows, edge-based performs nearly as well as the filtering approach based on feature in-

dexing. Given that our knowledge base contains hundreds of concepts and relations (see

Section 4.1.2) and considering that all of them could potentially be labels, we expect this to

be the case for episodic memory applications.

The advantages of using feature-based filtering are most prominent when the num-

ber of labels is small and the number of features is large.

Deep Indexing

Shallow indexing provides fast access to individual episodes given a set of triples. Deep

indexing is intended to link episodes to other episodes by how they differ structurally from

one another. We call such links difference links as they are similar to those in Protos [95].

Such links will only be followed if the current memory cue has the same difference when

compared to one of the linked episodes.

Creating difference links is a way to store important structural differences between

episodes in memory. Such qualitative differences are computed during memory retrieval

and stored when feedback from the external application suggests that a retrieved episode

was not appropriate for the task. For example, if *Episode1 was retrieved by memory

when queried with stimulus S, and the external application deems *Episode1 not appro-

priate (e.g. by using it for some task that results in a failure), and S in to be stored as part of

52

Figure 4.4: Difference links connecting two episodes. *Episode1 represents a Package-

Delivery where the original city of the Package is the same as the delivery city. *Episode2

represents a Package-Delivery in which the package has to be delivered to a location in a

different city than that of origin.

*Episode2, the differences between S and *Episode1 computed during retrieval are

installed as differences between *Episode1 and *Episode2.

Figure 4.4 presents an example of difference links. *Episode1 represents a

Package-Delivery where the original city of the Package is the same as the delivery city.

*Episode2 represents a Package-Delivery in which the package has to be delivered to a

location in a different city than that of origin.

53

4.2.2 Forgetting

Restricting the number of stored episodes is an effective way to achieve scalability for a

long-term memory. Various techniques have been proposed for case deletion that address

competence and performance preservation (see Section 2.4.1).

There are task-specific techniques that measure the performance on a given task in

order to decide whether to keep a memory item or not. Because they are task specific, we

decided to let the application using the generic memory module implement them. There-

fore, in our current implementation, both the decision on when to store a new episode and

when to delete an old one are left to the external application.

Even though the current memory implementation does not implement forgetting,

there is some built-in support for task-independent memory management in the form of

redundancy detection. Time-based decay and episodic salience are natural extensions to

our memory module and we plan to add them and investigate their influence in the future.

4.3 Matching

A robust memory needs to employ a flexible matching algorithm, such that old situations are

still recognized under new trappings. For this purpose we use a flexible semantic matcher

[134] that can handle a broad range of misalignments between the source and target con-

cepts.

4.3.1 A Flexible Semantic Matcher

We build on Yeh’s work on flexible semantic matching [134]. His semantic matcher takes in

two representations (equivalent to conceptual graphs [111]) and uses taxonomic knowledge

and transformation rules to find the largest connected subgraph in one representation that

is isomorphic to a subgraph of the other.

The taxonomic knowledge includes both concepts and relations and is expressed as

54

components in the CLib. Domain knowledge can be represented by extending the CLib and

will be thus employed seamlessly by the matcher.

Yeh’s matcher employs a set of about 200 transformation rules to shift the represen-

tations in order to improve the match. These transformations might enable other subgraphs

to match isomorphically, which in turn might enable more transformation rules to apply,

and so on until the match improves no further.

Transformation rules are instances of the transfers through pattern [70] which has

the following form:

C1
r1−→ C2

r2−→ C3 ⇒ C1
r1−→ C3

where Ci is a concept and rj is a relation. Example rules include2:

part descension - acting on a whole means also acting on its parts

Event1
object
−−−→ Entity2

has−part
−−−−−−→ Entity3 ⇒ Event1

object
−−−→ Entity3

transitivity of has-part relation

Entity1
has−part
−−−−−−→ Entity2

has−part
−−−−−−→ Entity3 ⇒ Event1

has−part
−−−−−−→ Entity3

Transformation rules are intended to breach the representational gap that might ex-

ists between base and a target concepts. This library of transformation rules is based on

the Component Library [14] upper ontology and has been used to improve matching in the

domains of battle space planning [136], office equipment purchasing [137], and word-sense

disambiguation and semantic role labeling [135].

2For a complete set of transformation rules see [134]

55

4.3.2 Semantic Matching Uses in Memory Retrieval

The memory module uses the semantic matcher to assess the semantic similarity between

two graphs (expressed as a numeric score) and also to determine the qualitative similarities

(i.e. the common subgraphs) and qualitative differences between them (i.e. the part of the

graph other than the common subgraph).

Match Score

There are multiple possibilities for computing the similarity score between concepts, de-

pending on which concept is taken as a reference:

semsim(C1, C2) =
1

|C1|
∗

∑

ti∈C1∼C2

score(ti)

measures how well C1 matches C2 with respect to C1,

where C1 ∼ C2 represents the isomorphic mapping from C1 to C2,

ti represents the isomorphic relation between a vertex in the C1 graph and its corresponding

counterpart in C2;

score(ti) measures how well the two vertices match and is a number between 0 and 1

provided by the matcher.

This similarity measure is not commutative as

semsim(C1, C2) 6= semsim(C2, C1)

A commutative similarity metric can be defined as:

sim(C1, C2) = semsim(C1, C2) ∗ semsim(C2, C1)

56

Qualitative Similarities and Differences

The similarity score between the two concepts gives only a quantitative measure of their

similarity. Often times a qualitative characterization is needed. For example, when assess-

ing the similarities between the goals of two plans, we are interested in what the structural

differences between them are. These differences can be used to index memory and retrieve

more relevant episodes.

Based on the common isomorphic subgraph returned by the matcher when matching

C1 and C2, we compute:

• C1-matched = the set of vertices in C1 that have corresponding vertices in C2

• C1-unmatched = the set of vertices in C1 that don’t have corresponding vertices in

C2

• C2-matched = the set of vertices in C2 that have corresponding vertices in C1

• C2-unmatched = the set of vertices in C2 that don’t have corresponding vertices in

C1

Application Control

A memory module that can be attached to multiple applications has to provide those appli-

cations as much control over its functioning as possible. We tried to do that by making the

similarity function a parameter to the memory module.

External applications can provide their own such function, as long as it is monoton-

ically non-decreasing. That is:

∀M1 ⊆M2, sim(M1) ≥ sim(M2)

where Mi is a match result and sim is a similarity function:

sim(M): M→ R+

57

defined on the set of all possible match results M with non-negative real values.

This requirement comes from the bias that is built into the memory retrieval algo-

rithm. The algorithm tries to maximize the size of the matching set of triples M .

This allows the external application to customize it according to its needs (e.g. using

a domain dependent feature weighting scheme).

Additionally, any semantic matcher that works on conceptual graphs (e.g. the

Structure-Mapping Engine [43]) can be used in connection with the our episodic memory

module.

4.4 Retrieval

4.4.1 Retrieval Algorithm

During retrieval, shallow indexing will select a set of episodes based on the number of

common features between each one and the stimulus (see Algorithm 1 - shallow-index-

retrieve). Retrieved episodes are sorted in descending order of their hit-count. This is the

sum of the weights of all remindings that indexed a particular episode.

hit-count(Ej) =
∑

Ej∈reminded−episodes(ri)
reminding-weight(ri)

Starting from a subset of these candidate episodes, a hill-climbing algorithm (see

Algorithm 2 3) using semantic-matching will find the set of episodes that best match the

external stimulus.

It is the organization of memory given by this indexing mechanism and the search-

based retrieval that sets our approach apart from those employing a flat memory structure

that is searched serially (e.g. [88, 40]).

3A note on the pseudocode notation of these algorithms: anything after a double slash until the end of the

line is a comment.

58

Algorithm 1 Algorithm for shallow-index-retrieve(stimulus, dimension)

reminded-episodes← [] // initialize result

remindings← generalize-triples(stimulus, dimension) // generate remindings

for all rem ∈ remindings do

new-rem-eps← collect-reminded-episodes(rem)

reminded-episodes← reminded-episodes ∪ new-rem-eps

end for

return sort-reminded-episodes(reminded-episodes) // order episodes by hit-count

Algorithm 2 Algorithm for retrieve(stimulus, dimension)

// do shallow retrieval to generate candidates

all-reminded-eps← shallow-index-retrieve(stimulus, dimension)

// restrict their number to *MAX-REMINDINGS*

open← first-n (*MAX-REMINDINGS*, all-reminded-episodes)

result← [] // initialize result

current-best← [] // initialize current-best

best-match-result← [] // initialize best match

// while there are candidate to examine

while open 6= [] do

current-episode← pop(open) // get the next candidate

// match it against stimulus on dimension

match-result← graph-match(stimulus, current-episode, dimension)

// a better match has been found

if match-result is better then best-match-result then

current-best← current-episode // capture new best match

best-match-result← match-result

// retrieve the difference links of current-episode that match match-result

matching-diff-links← matching-diff-links(match-result, current-episode)

// there are matching difference links

if matching-diff-links 6= [] then

// add linked episodes to open

open← open ∪ linked-episodes(matching-diff-links)

end if

end if

result← result ∪ match-result // record current match in result

end while

// return up to *MAX-RETRIEVED* episodes

return first-n(*MAX-RETRIEVED*, sort-result(result))

59

4.4.2 Retrieval Complexity

An important parameter that controls the functioning of the episodic memory module is the

number of initial candidate episodes that are explored (*MAX-REMINDINGS* in Algo-

rithm 2). Given that all stored episodes might have some - albeit slight - resemblance to a

stimulus, a limit on the number of such candidate episodes needs to be imposed4. Other-

wise, the hill-climb process might explore all stored episodes, failing to scale up. This limit

is a parameter of the memory module. In all experiments reported in this thesis we have

used 5 as the value for the maximum remindings explored.

One way to optimize the shallow-index-retrieve algorithm (Algorithm 1) is to gen-

erate only the remindings that will actually be explored (the best *MAX-REMINDINGS*),

removing the need to sort all reminded episodes by their reminding weights.

The average case complexity of the retrieval algorithm is O(Nd) where N is the

maximum number of remindings explored (denoted by *MAX-REMINDINGS* in Algo-

rithm 2) and d is the average number of episodes connected by difference links. In the

worst case an episode is be linked to all other episodes in memory, making the the com-

plexity linear in the number of stored episodes, the same as serial search. However, this

situation cannot arise because of the way difference links are created: an episode is linked,

at most, to all retrieved episodes. The number of retrieved episodes is bound by the *MAX-

RETRIEVED* parameter. Therefore, the worst-case complexity is O(NM) where M is

the maximum number of episodes retrieved by memory (denoted by *MAX-RETRIEVED*

in Algorithm 2). In practice, an episode is usually linked to fewer episodes than that.

Retrieval complexity is directly influenced by episode size and matching complex-

ity. However, these are external to the memory itself. It is important that the memory

module reduce the number of such matches performed by using filtering techniques like

shallow-indexing.

4MAC stage of MAC/FAC reduces the number of memory items to only those that scored within 10% of

the best matching score

60

4.5 Incremental Retrieval

Humans are good at dealing with continuous streams of stimuli and employing expectations

to focus attention and guide recognition. The question we address here is: can we devise

such an algorithm for an episodic memory?

This idea has been put forth before [105, 104] and has been applied in areas like

dialogue processing [47, 73] and plan recognition [105]. The sequential structure of events

helps constrain the type of expectations a system might form to just the next event(s) (its

type and possibly its description).

To be able to take advantage of this, a memory should have the ability to [105]:

form hypotheses based on a set of initial observations and background knowledge;

build expectations about next actions based on current hypotheses;

recognize if expectations were met when new observations become available;

refine and revise a set of hypotheses when expectations are not met; this includes drop-

ping hypotheses that do not conform to the observed stimuli and building new ones

that do.

4.5.1 Incremental Retrieval Algorithm

We have implemented an incremental version of the retrieval algorithm for cases when the

stimuli are presented incrementally. Examples of such situations are the plan recognition

task, where the agent observes the actions in some order, evidence gathering tasks, where

pieces of evidence become known one by one, and dialogue processing.

At first glance, the fact that data is presented incrementally appears to increase

retrieval time due to the need to query memory with the presentation of each new stimulus.

However, incremental data reduces the size of each query, so individual memory retrieval

should be faster. The results of these individual retrievals should be combined (e.g. by

61

checking that each instance in the base is either not mapped or mapped to a single instance

in the target).

The incremental retrieval algorithm (see Algorithm 3) is intended to work with se-

quences of actions that are presented one by one. It functions as follows: after a new

stimulus (i.e. action) is observed, the current set of candidate episodes is revised so that

they account for the last seen stimulus. This is done by trying to match the stimulus against

current episodes or by retrieving additional episodes, if necessary. New episodes are re-

trieved using the shallow indexing mechanism and are ‘synchronized’ with the previously

encountered stimuli, if necessary. There are cases when an episode does not become rele-

vant until several stimuli have been observed. The synchronization process tries to match

these episodes with all previous stimuli so that, when matching against current stimulus,

they are not at a disadvantage compared to the rest. All current episodes are then semanti-

cally matched to the new stimulus and, based on the result, they are re-ranked according to

their similarity to the plan observed so far.

Mismatches between an observed action and the action of a prior episode are al-

lowed: memory treats both these actions as possibly noisy actions. That is, either the

observed stimulus is noise, or the action we are trying to match against is. In contrast,

Episode-Based Reasoning [102] discards an episode from its hypotheses list as soon as

there is a mismatch between its actions and the observed input. Such an approach deals

poorly with noise commonly present in plan recognition datasets.

Similarity between a sequence of stimuli (i.e. actions) Si and the sequence of ac-

tions in an episode Aj is computed as:

sim({Si}, {Aj}) = seqsim({Si}, {Aj}) ∗ seqsim({Aj}, {Si})

seqsim({Si}, {Aj}) =
1

|{Si}|
∗

∑

∀Sk∼Al

semsim(Sk, Al)

62

Algorithm 3 Algorithm for incremental-retrieve(stimulus, dimension)

// initialize candidate-episodes

candidate-episodes← []

// initialize stimuli-history

prior-stimuli← []

while there are stimuli left do

// get current stimulus

current-stimulus← get-current-stimulus()

// generate remindings based on current-stimulus

reminded-episodes← shallow-index-retrieve(current-stimulus, dimension)

// for all reminded episodes

for all episode ∈ reminded-episodes do

// if it is not in candidate-episodes yet

if episode /∈ candidate-episodes then

// compare it to stimuli seen so far

synchronize-candidate(episode, prior-stimuli)

end if

end for

// for all candidates

for all candidate ∈ candidate-episodes do

// compare candidate to current-stimulus

candidate-match← match-stimulus-to-candidate(current-stimulus, candidate)

// if it matches

if candidate-match 6= [] then

// record its match in candidate-episodes

candidate-episodes← update-candidate-matched(candidate-match)

else

// record the fact that it did not match

candidate-episodes← update-candidate-unmatched(candidate-match)

end if

end for

// re-rank candidate-episodes

candidate-episodes← sort-matched-episodes(candidate-episodes)

// record current-stimulus

prior-stimuli← prior-stimuli ∪ current-stimulus

end while

// sort candidate episodes in decreasing order of their matching scores

result← sort-matched-episodes(candidate-episodes)

// return up to *MAX-RETRIEVED* episodes

return first-n (*MAX-RETRIEVED*, result)

63

where semsim is defined as

semsim(C1, C2) =
1

|C1|

∑

ti∈C1∼C2

score(ti)

in Section 4.3.2.

This similarity measure is commutative.

4.5.2 Incremental Retrieval Complexity

The complexity of the incremental retrieval algorithm in the best case is linear in the number

of observed actions (s) and the maximum number of remindings explored for a new stimulus

(N). This happens if, at every step, the algorithm chooses to explore only the correct

episodes, whose events line up perfectly with the observed actions.

The worst case happens if, at every step, memory explores the maximum number

of episodes allowed (N) and each of them requiring synchronization with all previously

observed actions (s− 1 after seeing s stimuli). In this case the complexity is:

∑i=s
i=1 iNs = Nsm(m− 1)/2

which, assuming the average number of observed actions (m) is the same as the average

number of events in an episode, is O(Ns3)

However, this situation rarely arises in practice as the likelihood of seeing a com-

pletely new sequence of actions consisting of entirely new actions decreases rapidly as

memory matures. In the early stages of building the memory, sequences of actions are very

dissimilar to one another and memory tends to do more exploration. However, a mitigating

factor is that the number of explored episodes is bound by the number of episodes stored

in memory. Therefore, in the early development of memory, many of the stored episodes

are explored, but there are few of them. Later, as memory matures, few of the (now many)

episodes are explored.

64

As opposed to statistical approaches (such as [17]), the complexity is not a function

of the number of goal schemas, but only of the number of observed actions.

4.6 Memory Interface

The memory module provides two basic functions: store and retrieve.

4.6.1 The Store Function

Store takes a new episode represented as a triple [context, contents, outcome] and stores it

in memory, creating remindings along the three dimensions.

An optional parameter to the store function is the result of a call to the retrieve

function with one of the new episode’s dimensions. Using the differences computed by

this, memory creates difference links between new episode and the retrieved episodes. Dif-

ference links are a way to cache the result of the matching between episodes.

4.6.2 The Retrieve Function

Retrieve takes a stimulus (i.e. a partially specified episode) and a dimension and retrieves

the most similar prior episodes along that dimension.

Memory retrieval provides also information on how a stimulus matched a retrieved

episodes. This information is intended to be used by the external application to help it make

better use of the returned episodes.

The retrieval function returns a list of most similar episodes, each item in the list

containing:

episode id - an identifier for the retrieved episode;

score - the match score between the given stimulus and the retrieved episode on the given

dimension;

65

stimulus-matched - the set of triples in stimulus that matched triples in episode;

stimulus-unmatched - the set of triples in stimulus that did not match any triples in

episode;

episode-matched - the set of triples in episode that matched triples in stimulus;

episode-unmatched - the set of triples in episode that did not match any triples in stimulus;

mappings - a set of mappings from instances in stimulus to those in episode;

triple mappings - a set of mappings from triples in stimulus to corresponding triples in

episode; note that due to the use of transformations these mappings might not be

one-to-one.

4.7 Chapter Summary

In this chapter we presented our implementation of the generic episodic memory module

that tries to satisfies all the requirements put forth in Chapter 3.

We have presented an episode representation intended to capture the dynamic aspect

of episodes, the context in which they take place, the set of actions they are composed of

(their contents) and the effect they have on the state of the world (their outcome). We argue

that such a representation is suitable to generate a memory structure that can be used for

various tasks by simply using different retrieval dimensions.

Our proposed organization scheme involves a two layer indexing scheme, with a

first stage (shallow indexing) that only looks at generalized features and disregards struc-

tural information, and a second stage (deep indexing) that links episodes by how they differ

structurally. The retrieval process takes advantage of these index structures by selecting a

subset of the episodes most likely to be structurally similar to the current situation (using

shallow indexing) and hill-climbing from that set using semantic match to more throughly

66

assess their similarity. An incremental retrieval algorithm that works on sequences of events

as well as a similarity measure for sequences of events were proposed.

During the design and implementation process of the generic memory module, we

tried to leave task specific decisions to the application. For example, the scoring function

can be provided by the application so that it can take advantage of a domain-dependant

weighting scheme.

In the following chapters we will evaluate this implementation in terms of its per-

formance and competence at several tasks.

67

Chapter 5

Memory-based Planning

5.1 The Planning Problem

The classical planning problem is defined as follows: given the description of an initial

state of a world, a goal state, and the description of a set of actions that can be performed,

find a sequence of actions that change the initial state into the goal state [133].

This problem has been proven theoretically and experimentally intractable [66, 23,

133], so many methods have been proposed to reduce its computational cost.

Hierarchical planning [86, 101] tries to order goals and actions based on their im-

portance. Planning proceeds by building an abstract plan that satisfies the more important

goals, which is then specialized at a lower level of abstraction until an executable plan is

obtained. The size of the search space is reduced by ordering the goals and actions.

Skeletal planning [42] relies on instantiation and adaptation of skeletal plans (i.e.

sequences of generalized planning steps). It emphasizes the role of representing expert

knowledge as ‘chunks’ (e.g. skeletal plans), which are retrieved and adapted when needed.

Efficiency is gained by using previous skeletal plans, without having to build them from

scratch.

Memory-based planning [52] (also known as case-based planning) solves new plan-

68

ning problems by remembering similar past experiences and reusing plans that succeeded or

repairing those that failed1. Stored cases are specific instances of prior planning problems

along with their solutions.

5.2 Memory-Based Planning

In this chapter we will look at how our memory module can be applied to memory based

planning. We will evaluate our memory-based planner on a dataset from the Logistics

domain.

We will not contribute to the debate as to whether memory-based planning is more

efficient then planning from scratch. The claim that reusing plans (or plan subparts) im-

proves efficiency by avoiding unnecessary repetition ([45, 53], etc.) is controversial, both

on theoretical and empirical grounds [84]: the worst-case complexity of plan reuse is at

least the same as that of plan generation and efficiency gains are strongly dependent on the

particular domain and on how similar new and old problems are.

We are however interested in some of the problems addressed by memory-based

planning [112]: plan memory representation and plan retrieval. Being designed to address

the representation and organization of sequences of events, our memory module is directly

applicable to memory-based planning and tasks related to it like assessing the solvability of

planning problems, plan recognition, failure detection, etc.

5.3 Applying the Memory Module to Planning

We empirically evaluated how the proposed memory module performs on two tasks in the

Logistics domain [122]: planning and classification of planning problems into solvable and

unsolvable.

1For an extensive survey of case-based planning see [112]

69

The goal of this experiment is to evaluate the influence of indexing on retrieval

accuracy and speed and to investigate memory scalability.

Episodes for two tasks had the same representation: a plan goal and initial situation

as the context, the corresponding plan that accomplishes that goal for the contents, and

whether or not the goal is solvable (i.e. a plan that accomplishes the goal exists) as outcome.

These two tasks used the memory retrieval mechanism and the retrieved episodes

in different ways. Planning used retrieval based on context and adapted the contents of the

retrieved episodes, while classification employed retrieval based on context and adapted the

outcome of the retrieved episodes. Successfully building and using such a multi-functional

memory structure for different tasks supports our claim that a generic memory module can

be built and that our proposed architecture is a good candidate for that purpose.

Besides the performance at the individual tasks, we were also interested in how

memory behaves as the number of observed episodes grows. We measured the number of

stored episodes as well as the number of explored episodes during retrieval.

5.3.1 The Logistics Domain

The logistics domain [122] consists of simple plans involving delivery of packages among

various locations. There are two types of locations: post offices and airports, either in

the same or in different cities. Within a city, packages are delivered by trucks, whereas

between cities airplanes are used. If a vehicle is not available at the pick-up location it has

to be moved there from its current location. We restricted the goals to involve deliveries of

a single package and three cities, resulting in 11 different goal types.

This domain has been extensively used in the planning literature and has become

one of the benchmarks of the planning competitions (e.g. [1]). An example of a planning

problem from the Logistics domain is presented in Figure 5.1.

70

Initial: (*Package-Deliver1 trucks *Truck3)

(*Truck3 location *Post-Office4)

(*Package-Deliver1 object *Package5)

(*Post-Office6 is-inside *City7)

(*Package5 location *Post-Office6)

(*Post-Office4 is-inside *City7)

Goal: (*Package-Deliver1 destination *Post-Office2)

(*Post-Office2 is-inside *City7)

Plan: (*Drive8 object *Truck3)

(*Drive8 destination *Post-Office6)

(*Load-Truck9 object *Package5)

(*Drive-Truck10 destination *Post-Office2)

(*Unload-Truck9 object *Package5)

Figure 5.1: An example of a planning problem in the Logistics domain.

5.3.2 Dataset

We have randomly generated a set of 250 pairs of goals and initial situations, so that the

distribution of goal types is close to uniform. In order to generate unsolvable problems,

we generated minimally solvable problems (i.e. containing the minimal set of instances

such that they are solvable), then randomly removed facts from them. Each fact had a 0.2

probability of being removed, independently of other facts being removed, thus generating

a rather wide variety of goals and initial situation descriptions. We used the SHOP2 planner

[83] in order to determine whether a [goal, initial situation] pair is solvable and if so, to

build a plan that achieves the given goal. The resulting dataset had 129 unsolvable goals

and 121 solvable. We used this dataset for the tasks described above.

5.3.3 Domain Knowledge

Knowledge about the actions, states and objects in the Logistics domain was encoded as an

extension to our knowledge base (i.e. CLib). This domain knowledge is necessary in order

to be able to judge the similarity of planning problems and actions in the given domain. A

total of 7 objects, 11 actions and 3 relations have been defined. Figure 5.2 shows a part of

71

Place Physical-Object Move

Location Truck Move-Into

Post-Office Airplane Load-Airplane

Airport Package Load-Truck

City Move-Out-Of

Unload-Airplane

Unload-Truck

Drive-Truck

Fly-Airplane

Figure 5.2: A part of the ontology for the Logistics domain. Concepts in bold are pre-

defined in the CLib, those in italic are intermediate levels of the ontology, while those in

cursive correspond to domain objects or operators.

the taxonomy of objects and actions for the Logistics domain and their relation with CLib

concepts.

5.3.4 Experimental Setup

Building a memory based system for these tasks required writing a thin interface layer

on top of the EM generic memory module. This consisted of functions dealing with the

adaptation of the retrieved episodes. For all EM systems we limited the number of candidate

episodes explored to 5.

We adopted a storage policy similar to [110] by storing only episodes for which the

retrieved memory episode could not accomplish its intended task. This reduced the memory

size without a decrease in performance.

For both tasks we performed a 10-fold cross validation, generating learning curves.

We measured the performance of each of the systems in terms of accuracy, retrieval cost

(number of explored episodes per task), and the scalability of retrieval (number of episodes

explored vs. total number of episodes stored).

We have compared our approach against a k-nearest neighbor algorithm (denoted

here kNN(5)) that performs a serial search through the memory of episodes, and retains the

72

5 most similar episodes. We chose kNN for two reasons: first, to be able to evaluate the

impact of the indexing mechanism employed by our memory module; kNN(5) is an ablation

of our EM system: it uses the same semantic match routine to determine similarity between

a new episode and an old one and employs the same storage policy2. The most significant

difference between kNN and EM is that kNN’s memory is flat, while EM’s memory is

multi-layered. Second, serial search is the basic search process employed by memories

with a flat organization (e.g. SoarEM).

For the memory-based planning task we eliminated from the dataset the unsolv-

able goals, resulting in a total of 121 goal-plan pairs. A retrieved episode is considered

correct if its plan can be easily adapted (i.e. using only variable substitutions suggested by

the memory retrieval function) to solve the given goal. The plan corresponding to the most

similar episode retrieved was adapted. The results of these experiments are presented in

Figures 5.3(a), 5.4(a), and 5.5(a).

For the memory-based classification task we used all 250 goals, including both

solvable and unsolvable goals. The adaptation of retrieved episodes consists in taking the

majority vote of the top 5 most similar retrieved episodes in order to determine whether a

new goal is solvable or not. The results are presented in Figure 5.3(b), 5.4(b), and 5.5(b).

5.3.5 Discussion

For both tasks EM achieves the same accuracy as kNN(5) after most training episodes have

been seen. Even though kNN(5) learns faster, EM is able to catch up in the end.

In terms of explored episodes, EM is able to drastically reduce their number com-

pared to kNN(5). The difference is statistically significant at the 0.05 level for a two-tailed

t-test, after training has completed. As kNN(5) is an EM from which the multi-layered or-

ganization of episodes (i.e. indexing mechanism) has been ablated, we attribute the efficient

retrieval to this memory organization technique.

2The resulting kNN(5) implementation is similar to RIBL [37].

73

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
c
c
u
ra

c
y
 (

%
)

Observed Episodes

EM
kNN(5)

(a) Memory-based planning.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

G
o
a
l
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Observed Episodes

EM
kNN (5)

(b) Goal classification.

Figure 5.3: Accuracy results for the memory-based planning and goal classification tasks

for EM and kNN(5). Error-bars represent the standard deviation.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

#
 E

x
p
lo

re
d
 E

p
is

o
d
e
s

Observed Episodes

EM
kNN (5)

(a) Memory-based planning.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

#
 E

x
p
lo

re
d
 E

p
is

o
d
e
s
 p

e
r

G
o
a
l

Observed Episodes

EM
kNN (5)

(b) Goal classification.

Figure 5.4: Number of explored episodes for the memory based planning and goal classifi-

cation tasks for EM and kNN(5). Error-bars represent the standard deviation.

74

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

#
 S

to
re

d
 E

p
is

o
d

e
s

Observed Episodes

EM
kNN (5)

(a) Goal classification.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

#
 S

to
re

d
 E

p
is

o
d

e
s

Observed Episodes

EM
kNN (5)

(b) Memory-based planning.

Figure 5.5: Number of stored episodes for the memory based planning and goal classifica-

tion tasks for EM and kNN(5). Error-bars represent the standard deviation.

In terms of memory size, EM stores slightly more episodes than kNN(5). This is

explained by the fact that EM learns slower and in the process stores those episodes for

which it did not perform well when they were first seen. Without a memory compaction

mechanism, these episodes are left in memory. However, even having stored more episodes

than kNN(5), EM examines significantly fewer episodes with respect to the number of

stored episodes. This shows that EM’s retrieval scheme is scalable. Another argument for

this is that even though the number of episodes stored by EM increases, the number of

explored episodes per task stays constant (Figure 5.4).

5.4 Chapter Summary

This chapter presented an application of the generic episodic memory module to the prob-

lem of memory-based planning and classification. Developing this application required

representing domain specific knowledge (i.e. plan operators) and a thin interface layer that

adapted the retrieved episodes for the use of the respective task.

75

We evaluated the proposed memory module on two different tasks in the logistics

domain: memory-based planning and memory-based classification. Empirical evaluation

showed that the indexing mechanism maintains the same level of performance but signifi-

cantly improves retrieval efficiency compared to a nearest-neighbor algorithm. The storage

and retrieval strategies proved scalable: even though the number of stored episodes grew

linearly, the number of explored episodes remained constant or grew at a much slower rate.

76

Chapter 6

Episodic-Based Plan Recognition

We applied the episodic memory module to the problem of plan recognition. Episodic

memory lends itself easily to this task: it organizes temporally ordered events, these events

are dynamic, changing the state of the world, and they are observed incrementally. Storage

and recognition of past events are the basic processes of an episodic memory.

We use the generic episodic memory module to perform incremental plan recogni-

tion and to build the plan library. Unlike other case-based plan recognizers our approach

does not require complete knowledge of the planning domain or the ability to record inter-

mediate planning states. The memory structure that it builds is multi-functional and can be

used for other tasks such as plan generation or classification.

6.1 The Plan Recognition Problem

Plan recognition is the problem of ascribing goals, intentions and future actions to an actor

based on the actor’s observed actions [105].

A growing class of AI applications relies on recognizing complex ongoing events:

language understanding and response generation [4, 92], user interfaces [46], help systems

[77], and collaborative problem solving [72].

77

The use of plan recognition in an application has several benefits [55]:

improved performance - e.g. reducing the wait time for resources by anticipating their

use given the user’s observed actions,

higher reliability - by detecting errors faster and correcting them, and

reduction of user workload - e.g. by plan completion.

Plan recognition algorithms should generate incremental predictions, preferably af-

ter each action is observed, thus offering early predictions and they should be fast at this

task (e.g. faster than it takes for the observed agent to execute the next action so that the

recognizer system can take counter-action).

Plan recognition approaches can be characterized along several dimensions: the

type of recognition method used, the type of relation between the agent executing the plan

and the observer, and whether the plan library is fixed (i.e. pre-built) or can be extended

during recognition.

According to the recognition method used, plan recognition approaches can be clas-

sified as: deductive [59], abductive [5], probabilistic [24], and case-based [60].

Based on the relation between the agent executing the plan and the recognizer, the

plan recognition problems can be classified as intended (in which the agent cooperates with

the recognizer), or keyhole [3] (where there is no cooperation).

The need for domain-independent plan recognition systems has long been recog-

nized. Huwer et al. [56] identifies several requirements for such plan recognition algo-

rithms: efficiency, robustness, use of domain-independent representation of actions and

plans, ability to detect and incorporate new plans into the plan library, ways of limiting

the search through the plan library, and ability to deal with noise (i.e. erroneous actions).

Adding domain-specific knowledge to a plan recognizer might improve performance, but

has to be balanced against the recognizer’s purpose of being domain-independent.

78

6.2 Episode-Based Plan Recognition

We built a memory-based planner for keyhole plan recognition that uses our generic episodic

memory module and its recognition mechanism to store and retrieve plans. It addresses all

the requirements listed above: the action and plan representation are generic in nature, plan

memory (i.e. the plan library) is grown at the same time as recognition is attempted, and

memory retrieval limits the search to the most similar prior plans through indexing. The

memory module employs a flexible matching algorithm for sequences of actions that can

effectively deal with noise.

6.2.1 Case-Based Plan Recognition

Related approaches include the case-based plan recognition of Cox and Kerkez [34], which

is based on state indexing. In their approach, after an action is observed, the recognizer

uses the resulting state to perform retrieval on the plan library. To deal with the exponential

growth of the state space, the observed actions are used to compute an abstract planning

state, which is then used as an index into plan memory.

Unlike traditional plan recognizers [59, 94], both this approach and ours can deal

with incomplete plan libraries, growing these libraries as recognition proceeds, effectively

learning from observations.

The approach of Cox and Kerkez [34] has several applicability requirements: that

the observer is able to record intermediate planning states, that it has a complete model of

the planning domain including consequences of actions, and that is able to detect whether an

action completed successfully. In contrast, our approach does not require complete domain

knowledge and its matching algorithm can take advantage of as much or as little domain

knowledge is available (in the form of ontologies of actions, objects, states, etc.).

Another important difference compared to case-based reasoning approaches in gen-

eral is that an episodic-based approach builds a multi-functional plan library that can be

used for tasks other than plan recognition. For example, such a memory can also generate

79

plans for a given goal, it can classify goals into solvable or not, or assess user proficiency

at a task by observing their actions when executing the task.

6.2.2 Episode Representation for Memory-Based Plan Recognition

For the plan recognition task an episode’s context is the instantiated goal of the plan being

executed. An instantiated goal is composed of a goal type (e.g. remove-file) and

its particular parameters (e.g. file.exe) The contents of the episode is the sequence of

actions observed by the recognizing agent. The outcome is the observed outcome of the plan

and, while not used directly in plan recognition, could be useful for tasks like predicting the

outcome of an ongoing plan (e.g. failure detection).

6.3 Experimental Evaluation

We evaluated out approach on a plan recognition task on two corpora: the Linux Plan

Corpus [17] and the Monroe Plan Corpus [18]1.

We decomposed the task of plan recognition into:

goal schema recognition - the recognition of the type of goal being attempted by the agent,

goal parameter recognition - the recognition of the parameters instantiating the goal type

being attempted,

instantiated goal recognition - the combination of the two, where both the type of goal

and its parameters are recognized.

This allowed us to both gain more insight into the functioning of our episodic-based

recognizer and to do a head-to-head comparison against a statistical approach on the same

corpora [19].

1We would like to thank Nate Blaylock for providing access to these plan recognition corpora.

80

This experiment is intended to test how memory accuracy at the task of plan recog-

nition compares to that of a classical approach, whether episodic-based recognition can

handle noise and variability in the data, and whether incremental retrieval is scalable.

6.3.1 The Plan Corpora

The Linux Corpus

The Linux plan corpus [17] was gathered from human Linux users from the University of

Rochester, Department of Computer Science. It is similar to Lesh [71], but is an order of

magnitude larger in size.

Users were given a goal like ‘find a file with ‘exe’ extension’ and were instructed

to achieve it using simple Linux commands (e.g. without using pipes, or programs such

as awk, etc.). All user commands along with their results were recorded. For each goal,

users were also asked to assess whether they accomplished it. The users judged a total of

457 sessions to be successful, involving 19 goal schemas and 48 action schemas (i.e. Linux

commands) (see Table 6.1). These sessions constitute the Linux dataset. Because some

users were not able to judge this correctly, there are still a number of failed sessions and,

therefore, data is noisy.

The Monroe Corpus

The Monroe corpus [18] consists of stochastically generated plans in the domain of emer-

gency response. The plans have been randomly generated by allowing a planner to make

nondeterministic decisions and therefore generating a diverse set of plans (in terms or or-

dering of their actions) for the goal. It contains 5000 plans with an average of 9.5 actions

per plan, a total of 10 goal schemas and 30 action schemas (see Table 6.1).

Stochastically generating plan corpora has an advantage over the approach that uses

plans generated by a deterministic planner: the planner usually optimizes for some param-

eter (plan length, cost, etc.), generating the same sequence of actions in a plan every time

81

Linux Monroe

Plan sessions 457 5000

Goal schemas 19 10

Action schemas 48 30

Avg. Actions/Plan 6.1 9.5

Table 6.1: The Linux and Monroe plan corpora description

a similar goal is seen. This is less than desirable since real world plans rarely display this

characteristic.

We chose these two corpora because they have been commonly used in the plan

recognition community (e.g. [17]).

6.3.2 Background Knowledge

To capture the domain knowledge for the Linux and Monroe datasets, we extended the

CLib by adding an ontology of domain actions and their parameters. Action pre and post-

conditions were not encoded.

The encoding process is straight-forward: usually, for each action in the specified

domain (i.e. plan operator) we created a corresponding class in CLib (e.g. Find-File)

and tried to find the most appropriate superclass for it based on the action semantics (e.g.

Action). We tried to group together similar operators whenever possible. This lead to the

creation of intermediate levels in the ontology (e.g. Find-Resource). Classes belonging

to intermediate levels were not instantiated in plans. For each operator, we encoded its

parameter types as a set of objects in the ontology (e.g. File for Find-File) and their

relationship to the goal-schema (e.g. x is the object of find-file in ‘find-file(x)’, which is

encoded as (Find-File object X)).

82

Intangible-Entity Action

Linux-Resource Shell-Command

Port Linux-Shell-Command

Host Remote-Connect

File Rsh

Directory Rlogin

User Create-Resource

Linux-Device Create-File

Host Archive-File

... Zip

Message ...

Resource-Specifier Find-Resource

Port-Name Find-File

Host-Name Find-By-Name

Find-By-Size

Figure 6.1: A part of the ontology for the Linux domain. Indentation is proportional to

depth in the ontology. Concepts in bold are pre-defined in the CLib, those in italic are

intermediate levels of the ontology, while those in cursive correspond to domain objects or

operators.

Linux Domain Knowledge

For the Linux domain, given the number of tasks a single command can achieve based

on its parameters, we created separate classes based on the main type of its parameters.

For example, there are two types of Find operators Find-By-Name, Find-By-Size.

Figure 6.2 contains a part of the Linux domain knowledge.

Monroe Domain Knowledge

For the Monroe domain the same encoding methodology was followed. However, fewer

classes were encoded given that there are fewer domain action and goal schemas. Fewer

intermediate levels have been added to the ontology as actions in this domain deal mostly

with concepts such as Transfer and Move, two CLib clusters that are well populated.

83

Location Action

Town Treat

Garbage-Dump Treat-In-Hospital

Mall ...

... Replenish

Vehicle Fill-In

Truck Pump-Gas-Into

Tow-Truck

Tree-Truck ...

... Attach

Person Hook-Up

Driver Hook-To-Tow-Truck

Bus-Driver

Truck-Driver

Figure 6.2: A part of the ontology for the Monroe domain. Indentation is proportional to

depth in the ontology. Concepts in bold are pre-defined in the CLib, those in italic are

intermediate levels of the ontology, while those in cursive correspond to domain objects or

operators.

6.3.3 Experimental Setup

We evaluated the recognition performance on three tasks: goal-schema recognition, pa-

rameter recognition and instantiated goal-schema recognition, using memory to retrieve the

most similar episodes given a sequence of actions and making a prediction based on the

retrieved episodes.

Making Predictions

For the tasks of goal schema recognition and instantiated goal recognition the top three pre-

dictions were generated. For parameter recognition the top two predictions were generated.

For the goal schema recognition task a weighted majority vote using similarity

scores of the retrieved episodes was used to determine the predicted goal schema.

For each prior plan retrieved, memory provides the associated set of mappings from

the parameters of the observed actions to those of the stored plan. For the goal parameter

84

recognition these mappings were used to map the parameters of the most similar episodes

retrieved back to those of the actions observed. If not all parameters of the goal were

mapped, those of the prior episode were predicted instead.

For the instantiated goal recognition the goal schema and parameters (using the

mapping scheme presented above) of the most similar episode were predicted.

The set of test plan sessions was presented to memory one action at a time, pre-

dictions being generated after each action from the top four most similar prior episodes

retrieved by memory. We limited the maximum number of explored remindings generated

after each action is observed to five for both domains. All observed plans have been stored

in memory, no storage policy being implemented.

Measurements

We measured the accuracy of the recognizer in terms of Precision (P), Recall (R) and

F-measure (F).

Precision is the number of correct predictions divided by the total number of pre-

dictions (i.e. the number of times the recognizer chooses to make a prediction).

P = # correct-predictions / # total-predictions

Recall is the number of correct predictions divided by the number of predictions

opportunities (i.e. the number of observed actions).

R = # correct-predictions / # prediction-opportunities

F-Measure is the harmonic mean of P and R.

F = 2PR/(P+R)

These three measures represent the overall accuracy of the recognizer as they in-

clude predictions made after each new observed action.

85

A measure of how many plans were eventually recognized is denoted by conver-

gence (Conv), which is the number of correct predictions after the last plan action was

observed. A recognition session is said to have converged if its last prediction was correct.

Conv = # correct-last-predictions / # plans

An important characteristic of incremental recognizers is how soon after a plan

starts they start making the same correct prediction. This is measured by the convergence

point (CP). It was measured both in terms of number of observed actions as well as in terms

of percentage with respect to the average number of actions of converged sessions.

CP = i⇔ ∀j ≥ i Pj is correct

where Pj is the prediction after seeing action j.

Besides its performance as a plan recognizer, we are also interested in how the mem-

ory mechanism performs in terms of efficiency of retrieval. We measured the retrieval effort

for each prediction, both in terms of number of actions matched, as well as a percentage of

the total number of stored episodes (whether the approach scales).

We performed a 10-fold cross-validation on each of the two corpora by dividing the

set of plan sessions into 10 equal-sized subsets, and using 9 of them for training and the

10th for testing.

The Statistical Approach

We compared our approach (referred to as Episodic-Based) to that of Blaylock and Allen

[19] (referred to as Statistical) on the the three plan recognition tasks on the Linux and

Monroe corpora.

The statistical recognizer treats goal recognition as a classification task, trying to

find the most likely instantiated goal given the observed actions. Two simplifying assump-

tions are made: that goal parameters are independent of one another and that a goal schema

86

is independent from an action’s parameter values. An implicit assumption is that the ob-

served actions are carried out in pursuing a single goal. The authors note that it is unclear

how to extend this approach to deal with recognition of goals pursued simultaneously.

The goal schema recognizer uses a bigram approximation to compute the goal

schema from the sequence of observed actions. The parameter recognizer takes the action

sequence and goal schema as its input and estimates the probability of all action parameters

seen so far as being the values of the goal parameters. For this it uses a tractable subset of

Dempster-Schafer Theory. Each parameter is predicted independently

We did not reimplement their recognizer, and therefore only compared our results

against those reported in their papers. Those results do not contain standard deviation, so

we only report those for the episodic-based approach.

6.3.4 Experimental Results

Goal Schema Recognition

Experimental results for the goal schema recognition task using the episodic-based ap-

proach are reported in Table 6.2 for the Linux domain and Table 6.3 for the Monroe do-

main. The comparison between the episodic-based and the statistical approach is presented

in Figure 6.3.

The precision, recall and F-measure are the same because the episodic-based ap-

proach makes predictions after each action (e.g. the number of prediction opportunities is

the same as the number of predictions made.) This is in contrast to Blaylock and Allen [19]

where predictions are made only if confidence is above a certain threshold.

Compared to the statistical approach, EM converges on more sessions for the Linux

domain (see Figure 6.3(a)) and on a similar number for the Monroe domain (Figure 6.3(b)).

Precision is slightly lower on both domains (see Figure 6.3(a) and 6.3(b)).2 However, recall

is much higher for the episodic-based approach on both domains. An increase in precision at

2Although probably not significantly different. [19] does not report variance for their data.

87

Linux

N-best 1 2 3

P, R, F (%) 39.05 59.55 65.58

Conv (%) 50.14 73.76 78.95

CP/AvgLen 2.7/4.30 2.37/4.14 2.28/4.48

CP/AvgLen (%) 62.79 57.24 50.89

Table 6.2: Experimental results for the episodic-based approach on the goal schema recog-

nition task in the Linux domain.

Monroe

N-best 1 2 3

P, R, F (%) 81.53 85.94 88.19

Conv (%) 97.82 99.24 99.60

CP/AvgLen 3.04/9.44 2.56/9.49 2.29/9.49

CP/AvgLen (%) 32.2 26.97 24.13

Table 6.3: Experimental results for the episodic-based approach on the goal schema recog-

nition task in the Monroe domain.

the expense of recall is expected given that the statistical recognizer only makes predictions

when a certain confidence threshold was achieved.

Although we compute the similarity between the observed plan and some prior

plans and use it to rank predictions we chose not to implement confidence thresholds, thus

generating predictions at each recognition step. The variability of the plans in our corpora

makes the similarity measure not a good candidate for the confidence thresholds.

In terms of convergence point, EM converges with approximately the same speed

as the statistical approach (after seeing 63%, 57% and 51% of actions in sessions that con-

verged, compared to 59%, 55% and 57%), but the length of a converged session is lower

(4.30, 4.14, 4.48 compared to 5.9, 7.2 and 7.2). This might be due to the fact that the sta-

tistical approach only makes predictions when above a certainty level, for which it needs to

see more actions.

88

 0

 20

 40

 60

 80

 100

Conv (Top 1, 2, 3)R (Top 1, 2, 3)P (Top 1, 2, 3)

Statistical
Episodic-based

(a) Linux Domain

 0

 20

 40

 60

 80

 100

Conv (Top 1, 2, 3)R (Top 1, 2, 3)P (Top 1, 2, 3)

Statistical
Episodic-based

(b) Monroe Domain

Figure 6.3: Comparison between episodic-based and a statistical approach on the goal

schema recognition task in the Linux and Monroe domains. Error-bars represent the stan-

dard deviation.

89

Goal Parameter Recognition

Experimental results for the goal parameter recognition task are reported in Table 6.4 for

the Linux domain and Table 6.5 for the Monroe domain. The comparison with the statistical

approach is presented in Figure 6.4.

Here precision differs from recall, as there are potentially multiple parameters per

goal schema, and their recognition is independent of one another.

Comparing the episodic-based approach to the statistical one, the same pattern can

be observed: the episodic-based approach achieves lower precision (see Figure 6.4(a) and

6.4(b)) and lower convergence, but higher recall.

The goal parameter recognition proved to be a more challenging task for memory,

especially in the Monroe domain, as showed by the performance difference when compared

to the statistical approach. Both approaches can only predict a goal schema parameter after

it appeared as an action parameter. However, [19] reports that the correct goal parameters

appear in any observed actions only in 82.1% of the sessions for the Linux domain and

in 79.4% of them in the Monroe domain. Of this upper-bound, memory achieves 62.1%,

75.5% for the top two predictions in the Linux domain. For Monroe similar levels of per-

formance are achieved: 52.1%, 61.5% for the best two predictions.

These levels are lower that those of the statistical approach and we think the blame

lies with the combination between the incremental retrieval algorithm and the matcher used.

When matching individual actions of a plan, the retrieval algorithm has to enforce consis-

tency in parameter mappings. However, the matcher we use cannot take advice on how to

match two structures, effectively starting from scratch. This might generate inconsistent

mappings for parameters already mapped in a previous step. These inconsistent matches

are discarded and matching of the two actions is not attempted again (as it would yield the

same result). The fact that converged sessions for this task are shorter seems to support

this argument, as the likelihood of discarding potentially useful actions due to inconsistent

matches grows with the number of observed actions.

90

Linux

N-best 1 2

P (%) 52.50 60.78

R (%) 49.33 58.26

F (%) 50.86 59.49

Conv (%) 50.99 62.00

CP/AvgLen 1.96/3.54 1.83/3.80

CP/AvgLen (%) 55.36 48.15

Table 6.4: Experimental results for the episodic-based approach on the goal parameter

recognition task in the Linux domain.

Monroe

N-best 1 2

P (%) 40.98 47.85

R (%) 40.34 47.66

F (%) 40.65 47.78

Conv (%) 41.41 53.33

CP/AvgLen 3.03/6.07 3.01/6.72

CP/AvgLen (%) 49.94 47.79

Table 6.5: Experimental results for the episodic-based approach on the goal parameter

recognition task in the Monroe domain.

However, to confirm this hypothesis an extension to the matcher is needed so that

it either accepts some initial mappings or returns all possible matches from which the one

that agrees with the set of prior mappings can be selected.

An adaptation strategy for parameter prediction would also likely improve these

results.

Instantiated Goal Recognition

Experimental results for the instantiated goal recognition for the episodic-based approach

are reported in Table 6.6 for the Linux domain and Table 6.7 for the Monroe domain. Fig-

ure 6.5 presents the comparison between the episodic-based approach and the statistical

91

 0

 20

 40

 60

 80

 100

Conv (Top 1, 2)R (Top 1, 2)P (Top 1, 2)

Statistical
Episodic-based

(a) Linux Domain

 0

 20

 40

 60

 80

 100

Conv (Top 1, 2)R (Top 1, 2)P (Top 1, 2)

Statistical
Episodic-based

(b) Monroe Domain

Figure 6.4: Comparison between episodic-based and a statistical approach on the goal pa-

rameter recognition task in the Linux and Monroe domains. Error-bars represent the stan-

dard deviation.

92

Linux

N-best 1 2 3

P, R, F (%) 26.23 41.68 46.6

Conv (%) 33.65 51.87 56.82

CP/AvgLen 2.5/3.70 2.25/3.65 2.20/3.91

CP/AvgLen (%) 67.56 61.64 56.27

Table 6.6: Experimental results for the episodic-based approach on the instantiated goal

recognition task in the Linux domain.

Monroe

N-best 1 2 3

P, R, F (%) 28.54 32.23 34.66

Conv (%) 41.39 48.81 54.15

CP/AvgLen 3.46/6.07 3.78/6.50 3.97/6.77

CP/AvgLen (%) 57 58.15 58.64

Table 6.7: Experimental results for the episodic-based approach on the instantiated goal

recognition task in the Monroe domain.

approach. In this case also, precision, recall and F-measure are the same for a particular N-

best prediction, as the number of prediction opportunities is the same as that of predictions

being made.

The results are different for the two domains: in the Linux domain (see Figure

6.5(a)), the episodic-based approach achieves lower precision then the statistical approach,

but higher recall and similar convergence; in the Monroe domain however, its performance

on all of the three tasks is worse when compared to the statistical approach.

As a successful recognition of the instantiated goal implies both correctly predict-

ing the goal schema and all its parameters, the performance on this task cannot exceed the

minimum performance on the two individual tasks. The problem with the goal parame-

ter recognition performance explained above is to blame for the poor performance on the

instantiated goal recognition task as well.

93

 0

 20

 40

 60

 80

 100

Conv (Top 1, 2, 3)R (Top 1, 2, 3)P (Top 1, 2, 3)

Statistical
Episodic-based

(a) Linux domain

 0

 20

 40

 60

 80

 100

Conv (Top 1, 2, 3)R (Top 1, 2, 3)P (Top 1, 2, 3)

Statistical
Episodic-based

(b) Monroe domain

Figure 6.5: Comparison between episodic-based and a statistical approach on the instan-

tiated plan recognition task in the Linux and Monroe domain. Error-bars represent the

standard deviation.

94

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

#
 E

x
p
lo

re
d
 E

v
e
n
ts

 p
e
r

R
e
c
o
g
n
it
io

n
 S

e
s
s
io

n

Observed Episodes

(a) Number of total explored events

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

%
 E

x
p
lo

re
d
 f
ro

m
 T

o
ta

l
S

to
re

d
 E

v
e
n
ts

Observed Events

(b) Explored events as percentage of total stored

Figure 6.6: Number of explored actions per recognition session in the Linux domain. Error-

bars represent the standard deviation.

Memory Performance

Figures 6.6(a) and 6.7(a) plot the number of explored actions per recognition session versus

the number of total episodes observed. The number of observed episodes is also the number

of stored episodes since all episodes are stored in memory.

The absolute number of explored events grows fast as memory develops, but at a

much slower pace after memory has matured. Please note that we measure the number of

events (not of episodes) matched, since the retrieval is incremental.

Figures 6.6(b) and 6.7(b) plot the percentage of stored episodes that have been ex-

plored in one recognition session.

Although the worst-case complexity of the retrieval algorithm is O(Ns3) where N

is the number of remindings explored and s is the average number of actions per observed

episode (see Section 4.5.1), in practice, only a fraction of that is explored. After all training

data has been observed in the Linux domain, memory explores about 120 events, which

represents under 11% of the number of episodes predicted by the theoretical worst case.

95

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000

#
 E

x
p
lo

re
d
 E

v
e
n
ts

 p
e
r

R
e
c
o
g
n
it
io

n
 S

e
s
s
io

n

Observed Episodes

(a) Number of total explored events

 0.01

 0.1

 1

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

%
 E

x
p
lo

re
d
 f
ro

m
 T

o
ta

l
S

to
re

d
 E

v
e
n
ts

Observed Events

(b) Explored events as percentage of total stored

Figure 6.7: Number of explored actions per recognition session in the Monroe domain.

Error-bars represent the standard deviation.

For the Linux domain N = 5 and s = 6.1.

The corresponding numbers for the Monroe domain are N = 5 and s = 9.5. The

total number of explored events after all episodes have been seen is 558 episode, about 13%

of the worst case prediction.

6.4 Discussion and Future Work

6.4.1 Summary of Results

The incremental episodic-based goal schema recognition achieved comparable precision,

higher recall and higher convergence than the statistical approach of Blaylock and Allen

[19]. For parameter recognition and instantiated goal-schema recognition in the Linux do-

main, the episodic-based approach achieved about the same recall and convergence levels,

but lower precision. For the goal-schema recognition in the Monroe domain recall was

about the same as for the statistical approach, but precision and convergence was signifi-

cantly lower. Precision, recall and convergence were significantly lower for the instantiated

96

goal recognition task in the Monroe domain.

In terms of memory performance, memory explored about 11% of the number of

events predicted by the worst-case scenario for the Linux domain and 13% for the Monroe

domain. The number of explored represents under .01% of the total stored events after

about a quarter of the dataset is observed.

6.4.2 Limitations of Current Approach

The performance of the current episodic-based plan recognizer is limited by its adaptation

strategy. We adopted simple adaptation strategies compared to the statistical recognizer.

The task that is least affected by this is the goal schema recognition task, where the episodic-

based recognizer performs the same or better than the statistical one. The goal parameter

recognition task is the most affected by the lack of an adaptation strategy, resulting in lower

performance compared to the statistical approach.

To improve the performance of the episodic recognizer two extensions are needed:

an extension to the matcher so that it can make use of prior mappings and find only those

matches that are consistent with them and a better adaptation strategy.

One issue that we did not address here is the sensitivity of memory retrieval perfor-

mance to noise. Even though the Linux plan corpus is noisy we don’t have good measure

of how much noise there is (e.g. how many sessions are misclassified as successes at ac-

complishing their goal; how many unnecessary actions were taken by users given a goal).

We would also like to study how memory performance degrades when noise is introduced.

This would also show the degree of flexibility of our recognition algorithm.

6.4.3 Lessons Learned

The evaluation of the episodic-based approach to plan recognition brought to light some im-

provements, and extensions one can make to the generic memory module implementation,

as well as new applications.

97

One such improvement involves the indexing of events. Our current approach in-

dexes only individual plan events, and not their relative ordering, relying on the retrieval

algorithm to match them in the order they were observed. We think that indexing plan

actions based also on their ordering might be beneficial as a way to limit the search space.

Another possible improvement is the addition of a measure of salience to each

episode, a reinforcement or penalty for an episode based on the correctness of its prior

predictions. Having such a mechanism seems useful when dealing with noisy data.

The current approach builds implicit expectations in the form of candidate episodes

that match the events observed so far. A way to improve retrieval speed is for memory

to actively look for how these candidate episodes differ from each other and test for the

presence/absence of those differences in the new stimuli.

Expectations built by a generic episodic memory could be used to focus processing

on confirming/disproving a smaller set of candidate hypotheses, by giving the application

the choice of specifying the ordering function. For example, in a domain like crime pre-

vention, one might want to test first the hypotheses that have the worst outcome, so that

preventive measures could be taken as quickly as possible.

Incremental recognition seems a promising way to manage the complexity of match-

ing knowledge structures. Plans as sequences of actions suggest a straight-forward way of

dividing such structures into small, coherent pieces. It would be interesting to extend this

idea to other kinds of knowledge structures by using some sort of attention focussing mech-

anism that can serve up small chunks of knowledge to the incremental recognizer.

Complex plans happen over longer periods of time and consist of many low-level

events. They are unlikely to be recognized just by looking at these individual events. A

good recognizer needs to be able to recognize subgoals and use them in the subsequent

recognition process.

In complex domains it is likely that an agent will carry on multiple plans at the same

time, interleaving their actions. A recognizer will have to be able to deal with these differ-

98

ent plans unfolding at the same time and still perform recognition on such data. Unlike

statistical approaches that might require major changes to accomplish this, the proposed

memory based plan recognition lends itself easily to this task. Episodic-based plan recog-

nition is already able to entertain multiple hypotheses at the same time. We think that the

only required change consists in adjusting the similarity measure so as to reward episodes

that match actions not matched by other episodes, actions most likely part of a different

ongoing plan.

6.5 Chapter Summary

In this chapter we have presented an episodic-based approach to plan recognition that uses

the generic memory module for events to store and retrieve plans.

We evaluated it against a statistical approach on three tasks in two domains and

found that it achieves similar if not better performance in all but one of the task-domain

combinations. We think that a better adaptation strategy might improve these results. The

incremental retrieval algorithm proved efficient and scalable.

Unlike statistical approaches that train different recognizers for the task of goal

schema and parameter recognition, ours captures this knowledge at once.

Due to the generic nature of the memory module, its organization and its retrieval

algorithm, this approach should be easily portable to new domains. The memory structure

built by the plan recognizer as well as its retrieval algorithm are multi-functional and can

be used for other purposes, like plan generation or classification (e.g. of goals as solvable

or not, of plans as likely to succeed or fail).

99

Chapter 7

Memory-Based Problem Solving

In this chapter we present an application of the episodic memory module to problem solv-

ing. Past experience is not commonly used by intelligent systems in conjunction with other

reasoning mechanisms.

Take for example Project Halo [57, 41] which attempts to develop tools that will

allow scientists without expertise in knowledge engineering to formulate, debug, extend,

validate and query knowledge bases. These knowledge bases are intended to answer novel

AP-level questions and provide domain appropriate explanations of how those answers were

derived. The subject matter experts will develop these knowledge bases by teaching a sys-

tem domain concepts, relations and methods for solving problems.

Answering such questions implies finding appropriate models in the knowledge

base that can provide meaningful answers and explanations of how they were obtained. A

selection process is usually necessary to select the set of appropriate models that solve a

question. By incorporating prior experience, an intelligent system will be able to make

more informed decisions while searching for an appropriate model. In this way a system

can improve its performance (by speeding up the search process) and even its competence

(by avoiding mistakes made answering similar questions in the past).

We have attached the memory module to a problem solver [25] and tested its per-

100

formance in the context questions answering of Project Halo. The memory module signifi-

cantly improved the performance of the problem solver.

7.1 The Problem Solving Problem

The problem of answering complex questions posed in natural language requires more than

producing a valid, logical interpretation of the user’s question. It requires finding an appro-

priate model that can derive the desired answer. This is referred to as the problem-solving

problem.

For example, in Newtonian physics one may have learned models (a system of ob-

jects, relationships, and equations) about moving objects, or two-object collision, or move-

ment with friction. Then, given a new problem (e.g. a description of a specific object mov-

ing in a specific way), the challenge is to map this problem onto the appropriate model (or

set of models) that contains the necessary knowledge to answer the question. An example

of such a question in Physics is presented in Figure 7.1.

An object starts from rest

and reaches a speed of 28 m/s in 2 s.

What distance does it cover?

Figure 7.1: An example of question in Physics.

Besides the question itself, problems in scientific domains tend to have an elaborate

scenario - a description of the specific objects involved and relations among them [27].

Information contained in the scenario is crucial in identifying the right set of models to use

in answering that specific question.

Only in a few cases the question will provide exactly the right information so that

the appropriate model(s) can be applied through standard deductive reasoning (e.g. inheri-

tance). In general, a search process is needed to find potentially applicable models.

The size of the set of models to be searched (i.e. knowledge base) and the com-

101

plexity of individual models (e.g. number of axioms) might render an uninformed search

process either unfeasible or incomplete. Another complication comes from the fact that

finding whether a model is applicable to a given scenario might be an expensive process.

Memory can help a problem solver alleviate both these problem by offering fast, accurate

and content-based access to previous problem solving episodes that are used to guide the

search. In this way, more problem solving time is spent on models more likely to be rele-

vant, potentially increasing both performance and competence.

7.2 The Basic Problem Solver

The Basic Problem Solver (BPS) [25, 26] is a state-space search process that is given a

logical representation of a question and a set of models. It uses semantic matching [134] to

choose the most appropriate models for the current question. Selected models are applied

to the current problem description (called scenario), generating a new problem description

by expanding the previous one with new facts. The process continues until an answer for

the given question is found.

To illustrate how this works, consider the previous question in Figure 7.1, expressed

in simplified English [28]:

An object moves.

The initial speed of the object is 0 m/s.

The final speed of the object is 28 m/s.

The duration of the move is 2 s.

What is the distance of the move?

Figure 7.2: An example of question in simplified English.

The formulation is translated into a logical form [28] which is passed on to BPS.

The initial scenario contains the logical form (an instantiation of the Move concept with

the initial and final speed values for its object). In this form, the question cannot be

answered, as the concept Move does not contain any equations relating queried variable

102

(distance) to those known (initial-speed, final-speed and duration).

To overcome this problem, BPS systematically explores the space of models looking

for an adequate model to apply to the current scenario. Model application is expensive, so

the problem solver is selective in the models it applies. The semantic match score between a

model and a scenario is used to guide model selection. However, as semantically matching

against all models in the KB is infeasible, BPS heuristically guides this search so that the

models that best match the scenario are considered first. This heuristic is based solely on

the contents of models and scenarios, not on past applications of those models (i.e. problem

solving episodes).

For the example in Figure 7.2, the model

Move-with-constant-acceleration is eventually found; it contains the appropri-

ate equations and is able to answer the question.

7.3 Episodic-Based Problem Solving

We have applied the episodic memory module to the problem of model selection in problem

solving, replacing BPS’s concept selection heuristic. The advantage of using a memory

based concept selection strategy comes from the fact that it uses models that have solved

similar scenarios in the past, and not the contents of a model, which might not be very

similar to a scenario.

Such a memory-based approach needs appropriate training data. Memory will be

presented with successful problem-solving episodes, each consisting of a scenario (the

episode context) and the model that was applied to solve it (the episode contents).

The problem solver will call memory every time a model is needed to expand the

current scenario. Given a scenario, memory will retrieve the most similar prior episodes

based on their context (i.e. scenario), adapt their contents (i.e. set of models) and present

them to the Basic Problem Solver.

103

7.4 Experimental Evaluation

We evaluated a version of the Basic-Problem Solver enhanced with the episodic memory

module against the original system on two datasets collected during the course of Project

Halo [57].

In this experiment we test whether memory can provide the same level of prob-

lem solving accuracy as search, while improving problem solving time. We also measure

memory overhead and how this grows with memory size.

7.4.1 Dataset

The dataset consists of questions in the Physics domain formulated by Subject Matter Ex-

perts (SMEs) in the context of one of Project Halo’s evaluations. All questions involved

problem-solving (i.e. required finding and applying a model in order to be solved); there

were no questions that asked for only for descriptions of concepts (e.g. ‘What is circular

motion?’).

These questions were formulated in simplified English by SMEs and translated into

logical forms. Question interpretation is outside the scope of this dissertation1. To separate

it from question answering, we ran the interpreter on all questions and manually graded its

output. We selected only those questions that were correctly interpreted.

To obtain the training set, we ran the problem solver on the set of correct question

interpretations and manually graded their answers and explanations. We then selected those

questions that were both correctly answered and explained.

Depending on the number of models required to solve a question we divided the

dataset in two:

single-model questions - those questions that can be answered by applying a single model.

An example of a single-model question is presented in Figure 7.2. There were 49

single-model questions correctly answered by BPS.

1See [31, 29, 28, 135, 38] for more details.

104

multi-model questions - the questions that require the use of more than one model in order

to be correctly answered. There were only five that were correctly answered by BPS.

7.4.2 Background Knowledge

The knowledge base used in this evaluation was developed for Project Halo by a Knowledge-

Engineer, other than the author. It contained 13 models of physical phenomena that encoded

knowledge from three chapters of a popular college-level Physics textbook, including lin-

ear motion with constant velocity, linear motion with constant acceleration, free fall, motion

under force, parabolic motion, etc. Answering required only eight of these 13 models.

7.4.3 Experimental Setup

In order for the retrieved models to be usable by the problem solver, an adaptation step is

required. During this step, each retrieved episode is semantically matched against the given

scenario and a set of correspondences is computed. Even though this adaptation step is not

part of the memory module, since it is required for compatibility with the Basic Problem

Solver, it is part of the overhead incurred when using a memory.

To evaluate the effects of using a memory on problem solving we measured several

things:

problem-solving accuracy - how many questions were answered correctly; we do not

want the memory-enhanced problem solver to sacrifice competence for efficiency.

problem-solving time - the time required for a question to be answered. This is the total

CPU time required to do problem solving, without question interpretation; this mea-

sure includes garbage collection time - as our algorithms were implemented in Lisp

we did not have a fine control of the garbage collection mechanism.

While this is the most important measure from a user’s stand-point, problem-solving

time only tells how fast the overall system is. Problem-solving time includes:

105

retrieval time (EM-ret) - the time required for memory to retrieve appropriate prior

episodes; this does not include adaptation time; We are interested in how this

grows with the number of stored episodes, as a way to test memory scalability.

Memory can be called multiple times while a question is answered. EM-ret is

measured as the sum of each of those individual retrieval times.

adaptation time (EM-adapt) - the time required for retrieved episodes to be adapted

so that they can be used by problem solver; EM-adapt is the sum of the adap-

tation time for each individual call to memory during the answering of one

question.

search time (PS) - time spent by the Basic Problem Solver deciding whether one of

the models returned by memory provides the answer to the given question; it

does not include memory retrieval time, nor adaptation time.

explanation time (EXPL) - the time required to generate an explanation once an

answer is found.

The following relation holds between these quantities:

Problem-Solving-Time = EM-ret + EM-adapt + PS + EXPL

number of explored nodes in the search - measures how big the search graph created by

BPS was. It is directly influenced by the number of candidate models considered

by the problem solver. It has the nice property that, unlike timing data, is machine-

independent.

All episodes presented to memory were stored. A maximum of three remindings

were used and the best three episodes retrieved by memory were suggested to the problem

solver. Similar results were obtained using five remindings and retrieving five episodes.

Since a model might match a scenario in multiple ways, memory adaptation might generate

more than three (or five) candidates.

106

For the single-model question dataset, we performed a standard 10-fold cross vali-

dation. For the multi-model question set, given its small size, we divided the single-model

question set in 10 equal parts and trained on nine of them, testing on the whole multi-model

set. We did this 10 times, each time leaving out a different part of the training set.

7.4.4 Results

Accuracy

Figure 7.3 presents the results for problem solving accuracy for the memory-based problem

solver for the single and multi-model question datasets.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

P
ro

b
le

m
 S

o
lv

in
g
 A

c
c
u
ra

c
y

Observed Episodes

BPS with memory

(a) Single model question dataset

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
ro

b
le

m
 S

o
lv

in
g
 A

c
c
u
ra

c
y

Observed Episodes

BPS with memory

(b) Multi model question dataset

Figure 7.3: Problem solving accuracy with episodic memory for single and multi-model

questions. Error-bars represent the standard deviation.

The memory-enhanced problem solver achieves perfect accuracy on single-model

questions and almost perfect accuracy on multi-model questions.

The memory enhanced problem-solver improves faster for single model questions

(see Figure 7.3(a)) than for multi-model questions (see Figure 7.3(b)). We attribute this

difference to the fact that the multi-model questions used a small subset of the available

107

models, for which there were few training examples. After those examples were stored in

memory, performance improved such that there was no significant difference at the end of

training. Even though multi-model questions use only a small number of models, the rest

of the stored episodes act as a confuser set. This is why in one of the trials, the accuracy

after training did not reach exactly 100%.

Number of explored nodes in the search space

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45

E
x
p
lo

re
d
 S

e
a
rc

h
 N

o
d
e
s

Observed Episodes

BPS
BPS with memory

(a) Single model question dataset

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45

E
x
p
lo

re
d
 S

e
a
rc

h
 N

o
d
e
s

Observed Episodes

BPS
BPS with memory

(b) Multi model question dataset

Figure 7.4: Comparison between number of search space nodes explored by the problem

solver with and without episodic memory for single and multiple model questions. Error-

bars represent the standard deviation.

Figure 7.4 plots the number of explored nodes in the search space by BPS with

and without memory for the single and multi-model question datasets. From the single

model question dataset (Figure 7.4(a)) we see that BPS’s concept selection heuristic is pretty

accurate, suggesting at most one extra model before the correct one (mean = 1.440, sd =

0.408). However, using memory (Figure 7.4(a)) we are able to reduce this even further

108

so that almost always the correct model is ranked first (mean = 1.065, sd = 0.100 after

training). The difference between the two is significant at least at the 0.05 level across all

test points using a two-tailed t-test.

For single-model questions, this might not be a huge improvement, but for multiple-

model questions where the search space grows exponentially, this will have a much greater

impact. Figure 7.4(b) shows the number of explored search nodes for the multi-model

question dataset. While BPS without memory explored 20.8 nodes, BPS with memory

explored less than half of that (mean = 6.540, sd = 0.780 after training). Again the difference

is significant at the 0.001 level using a two-tailed t-test.

Total problem-solving time

While memory significantly reduced the number of explored search space nodes for both

single and multi-model questions dataset, this measure does not take into account the over-

head incurred by using memory. We look now at the total problem-solving time.

Figure 7.5(a) shows the problem solving time for single model questions for BPS

with and without memory. The reduction in number of modes searched, as well as focusing

on models that worked in the past, significantly reduces the problem-solving time (differ-

ence is significant at least at the 0.01 level across all testing points). This difference is even

greater for multi-model questions (Figure 7.5(b)).

Figure 7.6 shows the break-down of the total problem-solving time for single-model

questions for BPS with and without memory. It is interesting to note that memory overhead

is rather low (Figure 7.6(a)), and decreases as training proceeds. At the end of training

memory overhead time is 723.75 ms, sd = 257.58 ms. On average 227.10 ms (sd = 38.87

ms) were spent in memory retrieval alone. This is due to the fact that a mature memory

provides more relevant concepts to BPS, which in turn calls memory less often.

For the single model questions, both with and without memory, explanation time

and problem solving time are about the same (Figure 7.6(a)-7.7(a)).

109

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50

T
o
ta

l
p
ro

b
le

m
 s

o
lv

in
g
 t
im

e
 (

m
s
)

Observed Episodes

BPS
BPS with memory

(a) Single model question dataset

 0

 20000

 40000

 60000

 80000

 100000

 0 10 20 30 40 50

T
o
ta

l
p
ro

b
le

m
 s

o
lv

in
g
 t
im

e
 (

m
s
)

Observed Episodes

BPS
BPS with memory

(b) Multi model question dataset

Figure 7.5: Comparison between problem solving times and without episodic memory for

single and multiple model questions. Error-bars represent the standard deviation.

Figure 7.7 shows the break-down of the total problem-solving time for multi-model

questions for BPS with and without memory. Memory overhead is again low - 2011.80 ms

(sd = 346.84 ms) and represents only a 7.3% of the total problem solving time (mean =

27531.60 ms, sd = 1474.69 ms).

The increase in problem-solving time from the 5th training episode until the 20th

can be explained in conjunction with memory performance: the accuracy is not very good,

so the problem solver calls memory repeatedly to get the right models.

7.4.5 Discussion and Future Work

A similar approach is presented in [62]. It uses MAC/FAC [40] as the retrieval model and

SME [43] to compute the match between two questions. The authors evaluate the problem

solving performance separately according to how different the test questions were compared

to the training set (i.e. the type of ‘transfer learning’ needed). The experiments presented

do not address measure retrieval efficiency or the scalability of this approach.

Given the similarity of both the adopted approach and datasets, if would be in-

110

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45

T
im

e
 (

m
s
)

Observed Episodes

EXPL+PS+EM-ret+EM-adapt
PS+EM-ret+EM-adapt

EM-ret+EM-adapt
EM-ret

(a) BPS with episodic memory

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45

T
im

e
 (

m
s
)

Observed Episodes

EXPL+PS
PS

(b) BPS

Figure 7.6: Problem solving time break-down for answering single model questions with

and without episodic memory. Error-bars represent the standard deviation.

111

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50

T
im

e
 (

m
s
)

Observed Episodes

EXPL+PS+EM-ret+EM-adapt
PS+EM-ret+EM-adapt

EM-ret+EM-adapt
EM-ret

(a) BPS with episodic memory

 0

 20000

 40000

 60000

 80000

 100000

 0 10 20 30 40 50

T
im

e
 (

m
s
)

Observed Episodes

EXPL+PS
PS

(b) BPS

Figure 7.7: Problem solving time break-down for answering multiple model questions with

and without episodic memory. Error-bars represent the standard deviation.

112

teresting to perform a direct comparison of the our episodic approach and this. We are

interested in how the episodic-based approach would perform on various ‘transfer learning’

categories, as well as how the MAC/FAC retrieval model would scale.

There are other ways of using memory in problem solving. What we presented

here was a rather low-level integration between a problem solver and a memory module.

A higher-level one would be to do episodic replay (i.e. analogical replay) by applying the

same models as in a previous episode, in the same order. This has the potential of further

reducing problem-solving time as the need for search will be drastically reduced.

The other two domains used in Project Halo (biology and chemistry) present another

interesting challenge for question answering, as they do not require systems of equations to

compute the answers. Rather, the emphasis is on finding the correct analogue in memory

that might provide the answer. For example, a typical question found in both chemistry and

biology is of the type: ’Two soluble substances react, producing an insoluble substance.

What kind of reaction is this?’; the correct answer is Precipitation-Reaction.

The episodic memory module is applicable in this case as well, by indexing the

concepts in the knowledge base based on their description and suggesting targets for their

possible reclassification.

7.5 Chapter Summary

In this chapter we presented an application of our episodic memory module to problem

solving. We showed that it significantly decreases total processing time for both simple

(i.e. single model) and complex (i.e. multi-model) questions. It does so by reducing the

number of nodes in the search graph of the problem solver as a result of providing accurate

candidates for scenario expansion. This is achieved while incurring a very low overhead.

The use of memory in problem solving is definitely not novel. However, our ap-

proach differs from others (e.g. [121]) in that the memory module is generic and was not

designed to work with this or any other problem solver. This module can be attached to

113

a variety of intelligent systems to enhance them with episodic memory functionality, in

addition to their own reasoning mechanisms.

114

Chapter 8

Summary and Future Work

8.1 Dissertation Summary

8.1.1 The Need for Memory

The ability to remember past experiences enables a system to improve its performance as

well as its competence. The increasing complexity of such experience and the longer life-

expectancy of today’s intelligent systems impose additional constraints on their memory

subsystems, like the ability to deal in a scalable manner with temporal experience with

deep associated semantics.

In order to achieve broad coverage, experience needs to be used in conjunction with

other reasoning mechanisms. That is why we need the ability to add episodic memory func-

tionality to intelligent systems. This requirement is underlined by the goal of developing

such systems in a modular fashion, using generic, reusable components.

To address these requirements, we proposed to separate the episodic memory func-

tionality from the system that uses it and to build a generic, reusable memory module that

can be attached to a variety of applications in order to provide this functionality. The devel-

opment of such a generic, reusable memory module will allow easy portability to different

systems and applications. It will enable systems that were not designed to rely on a mem-

115

ory system to benefit from it. Separating memory functionality from the system that uses

it should also reduce the overall complexity of the system since it will not have to be con-

cerned with this any more. An additional benefit of having reusable memory modules is

allowing research to focus on the generic aspects of memory representation, organization

and retrieval and its interaction with the external application.

8.1.2 Memory Requirements

We investigated the set of requirements that such a memory module should follow. In terms

of episodic encoding, a memory module should provide a generic representation of events,

that can be used with different types of events and a domain independent organization of

these events that supports flexible retrieval.

Memory should be able to store a large number of episodes, acquired during its

functioning, and do so efficiently. The storage time should not significantly increase with

the number of stored episodes (scalability). The decision on what items to store or discard

from memory should be based on preserving competence.

The retrieval algorithm of a generic memory module for events should be accurate,

efficient and scalable. The importance of scalability grows with the life expectancy of

the system. Memory items should be addressable by their content, which allows external

applications to formulate flexible queries. The relevant prior episodes should be retrieved

even if they only partially match the current context (flexible match).

Given that such a generic memory module is intended to be implemented as a stand-

alone application, it needs to provide a clean but flexible programming interface (API) that

external applications can use. Results of querying memory should also provide an explana-

tion of why they were retrieved (e.g. what the similarity between the query and the retrieved

memory items was). Such knowledge could be used by the external application in using the

retrieval results in its application (e.g. by adapting them).

116

8.1.3 Implementation of the Generic Memory Module

We have implemented such a generic memory module. Episodes are represented along

three dimensions: context (the general setting in which an episode happened), contents

(the ordered set of events that make up the episode), and outcome (an evaluation of the

episode’s effect). The underlying knowledge representation is frame-based and relies on

the KM language [32]. One of the distinguishing features of our implementation is that it

uses semantic knowledge to encode the episodes. This knowledge is represented using the

Component Library [14, 48].

Episodes are stored in memory unchanged and are indexed using a multiple-layer

indexing scheme: by their feature types (remindings) and how they differ structurally (dif-

ference links). The decision on what constitutes and episode and when to store it was left

to the external application using the memory.

We implemented a retrieval algorithm that given a stimulus and a dimension will

select the set of most similar prior episodes. It does so by selecting candidate episodes

based on their surface similarity to the stimulus, and then searching for the best match using

a semantic matcher. An incremental version of this algorithm for retrieving sequences of

events was also implemented.

8.1.4 Experimental Evaluation

We have evaluated the implementation of our memory module on three different tasks:

memory-based planning in the Logistics domain, plan recognition in the Linux and Monroe

domains, and memory-based problem solving for question answering for AP-level Physics

questions. The memory module was easily applicable to these tasks and domains. We chose

to do minimal adaptation of the retrieved episodes, so as to evaluate memory performance

separate from adaptation.

Across these tasks and domains, memory proved efficient, accurate and scalable.

The proposed indexing mechanism significantly increased performance over systematic

117

search, while preserving competence (memory-based planning, and memory-based prob-

lem solving). This increase is considerably larger for search spaces with large branching

factors as is the case in memory-based problem solving when multiple models need to be

used.

Incremental episodic-based goal schema recognition achieved comparable preci-

sion, higher recall and higher convergence when compared to a standard statistical ap-

proach. For parameter recognition, the episodic-based approach provided higher recall,

but lower precision and convergence than the chosen statistical approach.

Unlike specialized retrieval or recognition algorithms, our memory module builds

multifunctional structures that can be reused for different tasks than those trained on. The

episodic approach acquires a plan library incrementally, and can make use of available

domain knowledge for retrieval purposes.

8.2 Additional Applications

8.2.1 Incremental Recognition

Incremental recognition seems to be a promising way to manage the complexity of matching

knowledge structures. Plans are already represented as sequences of actions, which suggests

a straight-forward way of dividing such structures into small, coherent pieces. It would

be interesting to extend this idea to other kinds of knowledge structures by using some

sort of attention focussing mechanism that can serve up small chunks of knowledge to the

incremental recognizer.

8.2.2 Hierarchical Recognition

Complex plans happen over longer periods of time and consist of events that are presumably

at a much lower level of generality than the overall goal of the agent. Recognizing goals

at intermediate levels of this taxonomy could reduce the uncertainty introduced by this

118

representation gap [20].

8.2.3 Multiple Plan Recognition

In complex domains it is likely that an agent will carry on multiple plans at the same time,

interleaving their actions. A recognizer will have to be able to deal with these different

plans unfolding at the same time and still perform recognition on such data.

The proposed memory based plan recognition lends itself easily to this task. Episodic-

based plan recognition is already able to entertain multiple hypotheses at the same time. We

think that the only required change consists in adjusting the similarity measure. The mod-

ified similarity measure should reward episodes that match actions not matched by other

episodes, actions most likely part of a different ongoing plan.

8.2.4 Episodic Memory in Natural Language Question Answering

Interpreting natural language is a memory-intensive task. It involves references to past

events, making it well suited for a memory approach ([100, 74]). Answering questions

expressed in natural language could suffer from a number of problems such as: missing as-

sumptions from the question formulation, abstraction of details (e.g. linguistic cues need to

be expanded in order to recover them), contradiction, alternative representation [27]. Lever-

aging prior experience could provide assistance to processes such as semantic matching that

can help alleviate some of these problems. For example, fast access to relevant knowledge

structures could improve the performance of an NL system using a semantic matcher.

119

Bibliography

[1] AIPS 2000. The Fifth International Conference on Artificial Intelligence Planning

and Scheduling Systems. http://www.cs.toronto.edu/aips2000/, 2000.

[2] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches. AI Communications, 7(1),

1994.

[3] David W. Albrecht, Ingrid Zukerman, Ann E. Nicholson, and Ariel Bud. Towards a

Bayesian Model for Keyhole Plan Recognition in Large Domains. In Anthony Jame-

son, Cécile Paris, and Carlo Tasso, editors, Proceedings of the Sixth International

Conference on User Modeling (UM97), pages 365–376, 1997.

[4] J Allen and C R Perrault. Analyzing Intention in Utterances. In Readings in nat-

ural language processing, pages 441–458. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1986.

[5] James F. Allen and George Ferguson. Actions and Events in Interval Temporal Logic.

Journal of Logic Computation, 4(5):531–579, 1994.

[6] Klaus-Dieter Althoff, Andreas Birk, Christiane Gresse von Wangenheim, and

Carsten Tautz. CBR for Experimental Software Engineering. In Case-Based Rea-

soning Technology, From Foundations to Applications, pages 235–254, London, UK,

1998. Springer-Verlag.

120

[7] Klaus-Dieter Althoff and Rosina Weber. Knowledge Management in Case-Based

Reasoning. The Knowledge Engineering Review, 20:305–310, 2005.

[8] John R. Anderson. A Spreading Activation Theory of Memory. Journal of Verbal

Learning and Verbal Behavior, 22:261–295, 1983.

[9] John R. Anderson. The Architecture of Cognition. Harvard University Press, Cam-

bridge, MA, USA, 1983.

[10] John R. Anderson. The Adaptive Character of Thought. Lawrence Erlbaum Asso-

ciates, Hillsdale, NJ, USA, 1990.

[11] John R. Anderson. Cognitive Psychology and Its Implications. Worth Publishing,

New York, Fifth edition, 2000.

[12] Ray Bareiss. Exemplar-Based Knowledge Acquisition - A Unified Approach to Con-

cept Representation, Classification and Learning. Academic Press, San Diego, CA,

1989.

[13] Ray Bareiss and J. A. King. Similarity Assessment in Case-Based Reasoning. In

Proceedings of The Second Workshop on Case-Based Reasoning, pages 67–71, Pen-

sacola Beach, FL, 1989.

[14] Ken Barker, Bruce Porter, and Peter Clark. A Library of Generic Concepts for Com-

posing Knowledge Bases. In K-CAP 2001: Proceedings of the International Confer-

ence on Knowledge Capture, pages 14–21. ACM Press, 2001.

[15] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.

Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Res, 28(1):235–

42, 2000.

[16] Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. Efficient Matching and

121

Indexing of Graph Models in Content-Based Retrieval. IEEE Trans. Pattern Anal.

Mach. Intell., 23(10):1089–1105, 2001.

[17] N. Blaylock and J. Allen. Statistical goal parameter recognition. In The 14th Inter-

national Conference on Automated Planning and Scheduling (ICAPS’04), 2004.

[18] Nate Blaylock and James Allen. Generating Artificial Corpora for Plan Recognition.

In Liliana Ardissono, Paul Brna, and Antonija Mitrovic, editors, Lecture Notes in

Artificial Intelligence - User Modeling 2005, volume 3538. Springer, 2005.

[19] Nate Blaylock and James Allen. Recognizing Instantiated Goals Using Statistical

Methods. In Gal Kaminka, editor, IJCAI Workshop on Modeling Others from Obser-

vations (MOO-2005), pages 79–86, Edinburgh, 2005.

[20] Nate Blaylock and James Allen. Hierarchical Instantiated Goal Recognition. In

AAAI Workshop on Modeling Others from Observations (MOO-2006), 2006. AAAI

Technical Report WS-06-13.

[21] Katy Börner. Structural Similarity as Guidance in Case-Based Design. In EWCBR

’93: Selected papers from the First European Workshop on Topics in Case-Based

Reasoning, pages 197–208, London, UK, 1994. Springer-Verlag.

[22] Jaime G. Carbonell. Derivational Analogy: A Theory of Reconstructive Problem

Solving and Expertise Acquisition, 1986.

[23] David Chapman. Planning for Conjunctive Goals. Artificial Intelligence, 32(3):333–

377, 1987.

[24] Eugene Charniak and Robert P. Goldman. A bayesian model of plan recognition.

Artificial Intelligence, 64(1):53–79, 1993.

[25] Shaw-Yi. Chaw, Ken Barker, Bruce Porter, and Peter Yeh. Towards an Ontology-

122

Independent Problem-Solver. Technical report, The University of Texas at Austin,

2007. AI Technical Report TR-07-349.

[26] Shaw-Yi Chaw and Bruce Porter. A Knowledge-Based Approach to Answering

Novel Questions. In Proceedings of the 3rd International Workshop on Knowledge

and Reasoning for Answering Questions (KRAQ 2007), Hyderabad, India, January

2007.

[27] Shaw-Yi Chaw, Dan Tecuci, Peter Yeh, and James Fan. Capturing a Taxonomy of

Failures During Automatic Interpretation of Questions Posed in Natural Language.

In Proceedings to The Fourth International Conference on Knowledge Capture (K-

CAP), 2007. To Appear.

[28] P. Clark et al. Using a Controlled Language for Posing Questions to a Knowledge-

Based System (submitted). 2007.

[29] P. Clark, P. Harrison, T. Jenkins, J. Thompson, and R. Wojcik. Acquiring and Using

World Knowledge using a Restricted Subset of English. In Proceedings to The 18th

International FLAIRS Conference (FLAIRS’05), 2005.

[30] Peter Clark. PROTOS - A Rational Reconstruction. Technical report, Turing Insti-

tute, Glasgow, UK, 1987.

[31] Peter Clark and Phil Harrison. Controlled language processing for Halo question-

asking, 2003.

[32] Peter E. Clark and Bruce W. Porter. KM v2.0 - The Knowledge Machine: User’s

Manual and Situations Manual. University of Texas at Austin, 2001.

[33] N.J. Cohen and H. Eichenbaum. Memory, Amnesia, and the Hippocampal System.

MIT Press, 1995.

123

[34] M. T. Cox and B. Kerkez. Case-based plan recognition with novel input. Control

and Intelligent Systems, 34(2):96–104, 2006.

[35] Will Dodd. The Design of Procedural, Semantic, and Episodic Memory Systems for

a Cognitive Robot. Master’s thesis, Vanderbilt University, 2005.

[36] Herman Ebbinghaus. Memory: A Contribution to Experimental Psychology. New

York: Teachers College, Columbia University., 1885/1913.

[37] Werner Emde and Dietrich Wettschereck. Relational Instance-Based Learning. In

L. Saitta, editor, Proceedings to the 13th International Conference on Machine

Learning, pages 122–130. Morgan Kaufmann, 1996.

[38] James Fan and Bruce Porter. Interpreting loosely encoded questions. In Proceedings

of Nineteenth National Conference on Artificial Intelligence. AAAI Press, 2004.

[39] Edward A. Feigenbaum. The Simulation of Verbal Learning Behavior. In Computers

& Thought, pages 297–309. MIT Press, Cambridge, MA, USA, 1995.

[40] Kenneth Forbus, Dedre Gentner, and Kenneth Law. MAC/FAC: A Model of

Similarity-Based Retrieval. Cognitive Science, 19(2):141–205, 1995.

[41] N. Friedland, P. Allen, P. Matthews, M. Witbrock, D. Baxter, J. Curtis, B. Shepard,

P. Miraglia, J. Angele, S. Staab, E. Moench, H. Oppermann, D. Wenke, D. Israel,

V. Chaudhri, B. Porter, K. Barker, J. Fan, S. Chaw, P. Yeh, D. Tecuci, and P. Clark.

Project Halo: Towards a Digital Aristotle. AI Magazine, 2004.

[42] Peter Friedland and Yumi Iwasaki. The Concept and Implementation of Skeletal

Plans. Journal of Automated Reasoning, 1(2):161–208, 1985.

[43] Dedre Gentner. Structure-mapping: A Theoretical Framework for Analogy. Cogni-

tive Science, 7(2):155–170, April–June 1983.

124

[44] Dedre Gentner, Keith J. Holyoak, and Boicho N. Kokinov, editors. The Analogical

Mind: Perspectives from Cognitive Science. MIT Press, Cambridge, MA, 2001.

[45] Ashok K. Goel, Khaled S. Ali, and Eleni Stroulia. Some Experimental Results in

Multistrategy Navigation Planning. Technical report, Georgia Institute of Technol-

ogy, 1996. GIT-CC-95-51.

[46] Bradley A. Goodman and Diane J. Litman. On the Interaction between Plan Recog-

nition and Intelligent Interfaces. User Modeling and User-Adapted Interaction, 2(1-

2):83–115, 1992.

[47] Barbara J. Grosz and Candace L. Sidner. Attention, intentions, and the structure of

discourse. Computational Linguistics, 3(12):175–204, 1986.

[48] The MFKB group University of Texas at Austin. The Component Library.

http://www.cs.utexas.edu/users/mfkb/tree, 2004.

[49] Rogers P. Hall. Computational Approaches to Analogical Reasoning: a Comparative

Analysis. Artificial Intelligence, 39(1):39–120, 1989.

[50] Kristian J. Hammond. CHEF: A Model of Case-Based Planning. In Proceedings of

the Fifth National Conference on Artificial Intelligence, pages 267–271, 1986.

[51] Kristian J. Hammond. Case-Based Planning: Viewing Planning as a Memory Task.

Academic Press, 1989.

[52] Kristian J. Hammond. Explaining and repairing plans that fail. Artificial Intelligence,

1-2(45):173–228, 1990.

[53] Steve Hanks and Daniel S. Weld. A Dmain-Independent Algorithm for Plan Adap-

tation. Journal of Artificial Intelligence Research, 2:319–360, 1995.

125

[54] Douglas R. Hofstadter. Epilogue: Analogy as the Core of Cognition. In Dedre

Gentner, Keith J. Holyoak, and Boicho N. Kokinov, editors, The Analogical Mind:

Perspectives from Cognitive Science, chapter 15, pages 499–538. MIT Press, 2001.

[55] Stefan Huwer. Domain independent plan recognition. Master’s thesis, Computer

Science Department, University of Dundee, Dundee, Scotland, 1993.

[56] Stefan Huwer, Bill Smart, and Alistair Cairns. Domain Independent Plan Recogni-

tion, 1995. http://citeseer.ist.psu.edu/huwer94domain.html.

[57] Vulcan Inc. Project HALO. http://www.projecthalo.com.

[58] Anthony G. Francis Jr. Context-Sensitive Asynchronous Memory. PhD thesis, Geor-

gia Institute of Technology, August 2000.

[59] Henry A. Kautz. A theory of plan recognition and its implementation. In J. F. Allen,

H.A. Kautz, and R.N. Pelavin, editors, Reasoning about Plans, chapter 2. Morgan

Kaufmann, San Mateo, CA, 1997.

[60] Boris Kerkez and Michael T. Cox. Incremental case-based plan recognition using

state indices. In ICCBR ’01: Proceedings of the 4th International Conference on

Case-Based Reasoning, pages 291–305, London, UK, 2001. Springer-Verlag.

[61] Dennis Kibler and David Aha. Learning Representative Exemplars of Concepts: An

Initial Case Study. In J.W.Shavlik and T.G.Dietterich, editors, Readings in Machine

Learning. Morgan Kaufmann, 1990.

[62] Matthew Klenk and Ken Forbus. Measuring the Level of Transfer Learning by an

AP Physics Problem-Solver. In Proceedings of the Twenty-Second Conference on

Artificial Intelligence (AAAI-07).

[63] Boicho Kokinov and Robert M. French. Computational Models of Analogy-making.

126

In L. Nadel, editor, Encyclopedia of Cognitive Science, volume 1, pages 113–118.

Nature Publishing Group, London, 2003.

[64] Janet L. Kolodner. Organization and Retrieval in a Conceptual Memory for Events or

Con54, Where are You. In Proceedings of the Seventh International Joint Conference

on Artificial Intelligence (IJCAI-81), pages 227–233, 1981.

[65] Janet L. Kolodner. Retrieval and Organizational Strategies in Conceptual Memory:

A Computer Model. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1984.

[66] Richard E. Korf. Planning as Search: a Quantitative Approach. Artificial Intelli-

gence, 33(1):65–68, 1987.

[67] John Laird. Episodic Memory vs. Case-Based Reasoning. Invited talk at the Sixth

International Conference on Case-Based Reasoning (ICCBR), 2005.

[68] James H. Lawton, Roy M. Turner, and Elise H. Turner. A unified long-term memory

system. In K.-D. Althoff, R. Bergmann, and L.K. Branting, editors, Lecture Notes in

Artificial Intelligence - ICCBR-99, volume 1650, Berlin Heidelberg, 1999. Springer-

Verlag.

[69] Michael Lebowitz. Memory-Based Parsing. Artificial Intelligence, 21:363–404,

1983.

[70] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems: Rep-

resentation and Inference in the CYC Project. Addison-Wesley, Reading, Mas-

sachusetts, 1990.

[71] N. Lesh. Scalable and Adaptive Goal Recognition. PhD thesis, University of Wash-

ington, 1998.

[72] N. Lesh, C. Rich, and C. Sidner. Using Plan Recognition in Human-Computer Col-

127

laboration. In Proceedings of the Seventh International Conference on User Model-

ing, pages 23–32, 1999.

[73] Diane Litman and James Allen. A plan recognition model for subdialogues in con-

versation. Cognitive Science, 11:163–200, 1987.

[74] Kevin Livingston and Chris Riesbeck. Using Episodic Memory in a Memory Based

Parser to Assist Machine Reading. In AAAI Press, editor, Working notes of the AAAI

2007 Spring Symposium on Machine Reading, 2007.

[75] Jixin Ma and Brian Knight. A Framework for Historical Case-Based Reasoning.

In Kevin D. Ashley and Derek G. Bridge, editors, ICCBR, volume 2689 of Lecture

Notes in Computer Science, pages 246–260. Springer, 2003.

[76] D. Marr. Simple Memory: A Theory for Archicortex. Royal Society of London

Philosophical Transactions Series B, 262:23–81, July 1971.

[77] James Mayfield. Controlling Inference in Plan Recognition. User Modeling and

User-Adapted Interaction, 2(1-2):83–115, 1992.

[78] Arthur W. Melton and Edwin Martin, editors. Coding Processes in Human Memory.

John Wiley and Sons, New York, NY, 1972.

[79] Ray Mooney. Learning for semantic interpretation: Scaling up without dumbing

down. In James Cussens, editor, Proceedings of the 1st Workshop on Learning Lan-

guage in Logic, pages 7–15, Bled, Slovenia, 1999.

[80] Erik T. Mueller. Daydreaming in Humans and Machines. Ablex Publishing Corp.,

Norwood, NJ, USA, 1990.

[81] L. Nadel and M. Moscovitch. Memory Consolidation, Retrograde Amnesia and

the Hippocampal Complex. Current Opinion in Neurobiology, 7(2):217–227, April

1997.

128

[82] L. Nadel, A. Samsonovitch, L. Ryan, and M. Moscovitch. Multiple Trace Theory of

Human Memory: Computational, Neuroimaging and Neuropsychological Results.

Hippocampus, 10:352–368, 2000.

[83] D.S. Nau, T.C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, and F. Yaman.

SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research,

20:379–404, 2003.

[84] Bernhard Nebel and Jana Koehler. Plan Reuse versus Plan Generation: A Theoretical

and Empirical Analysis. Artificial Intelligence, 76(1-2):427–454, 1995.

[85] Alan Newell. Unified Theories of Cognition. Harvard University Press, Cambridge,

Massachusetts, 1990.

[86] Allen Newell and Herbert Simon. Human Problem Solving. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1972.

[87] Andrew Nuxoll. Enhancing Intelligent Agents with Episodic Memory, 2002.

[88] Andrew Nuxoll and John E. Laird. A Cognitive Model of Episodic Memory Inte-

grated With a General Cognitive Architecture. In Proceedings of the Sixth Inter-

national Conference on Cognitive Modeling, pages 220–225, Mahwah, NJ, 2004.

Lawrence Earlbaum.

[89] Andrew M. Nuxoll and John E. Laird. Extending Cognitive Architecture with

Episodic Memory. In Proceedings of the Twenty-Second Conference on Artificial

Intelligence AAAI 2007. AAAI Press, 2007.

[90] National Library of Medicine. http://chem.sis.nlm.nih.gov/chemidplus.

[91] Hiroyuki Ogata, Susumu Goto, Kazushige Sato, Wataru Fujibuchi, Hidemasa Bono,

and Minoru Kanehisa. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic

Acids Research, 27(1):29–34, 1999.

129

[92] C. Raymond Perrault and James F. Allen. A Plan-Based Analysis of Indirect Speech

Acts. American Journal of Computational Linguistics, 6(3-4):167–182, 1980.

[93] Euripides G. M. Petrakis and Christos Faloutsos. Similarity Searching in Medi-

cal Image Databases. IEEE Transactions on Knowledge and Data Engineering,

9(3):435–447, 1997.

[94] Martha Pollack. Plans as complex mental attitudes. In Philip R. Cohen, Jerry Mor-

gan, and Martha Pollack, editors, Intentions in Communication, pages 77–103. MIT

Press, Cambridge, Massachusetts, 1990.

[95] Bruce W. Porter, Ray Bareiss, and Robert C. Holte. Concept Learning and Heuristic

Classification in Weak-Theory Domains. Artificial Intelligence, 45:229–263, 1990.

[96] Ashwin Ram and J. C. Santamaria. Continuous Case-Based Reasoning. Artificial

Intelligence, 90(1-2):25–77, 1997.

[97] Carlos Ramirez and Roger Cooley. A theory of the acquisition of episodic memory.

In D. Aha and D. Wettschereck, editors, ECML’97: Case-Based Reasoning Work-

shop: Beyond Classification of Feature Vectors, pages 48–56, Prague, March 1997.

Springer-Verlag.

[98] John W. Raymond, Eleanor J. Gardiner, and Peter Willet. RASCAL: Calculation of

Graph Similarity using Maximum Common Edge Subgraphs. The Computer Jour-

nal, 45(6):631–644, 2002.

[99] Bradley J. Rhodes. The Wearable Remembrance Agent: A System for Augmented

Memory. In Proceedings of The First International Symposium on Wearable Com-

puters (ISWC ’97), pages 123–128, Cambridge, Mass., USA, 1997.

[100] Christopher K. Riesbeck. From conceptual analyzer to Direct Memory Access Pars-

ing: an overview., chapter 8. Ellis Horwood Limited, 1986.

130

[101] Earl D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. Artificial Intelli-

gence, 5(2):115–135, 1974.

[102] Miquel Sànchez-Marrè, Ulises Cortés, Montserrat Martı́nez, Joaquim Comas, and

Ignasi Rodrı́guez-Roda. An Approach for Temporal Case-Based Reasoning:

Episode-Based Reasoning. In Héctor Muñoz-Avila and Francesco Ricci, editors, IC-

CBR, volume 3620 of Lecture Notes in Computer Science, pages 465–476. Springer,

2005.

[103] D. L. Schacter. Searching for Memory: The Brain, the Mind, and the Past. Basic

Books, 1996.

[104] Roger C. Schank. Dynamic Memory. A Theory of Reminding and Learning in Com-

puters and People. Cambridge University Press, 1982.

[105] Charles F. Schmidt, N. S. Sridharan, and J. L. Goodson. The plan recognition prob-

lem: An intersection of psychology and artificial intelligence. Artificial Intelligence,

11:45–83, 1978.

[106] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics and Appli-

cations of Tree and Graph Searching. In PODS ’02: Proceedings of the twenty-

first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 39–52, New York, NY, USA, 2002. ACM Press.

[107] Lokendra Shastri. Episodic memory trace formation in the hippocampal system: a

model of cortico-hippocampal interaction. Technical Report TR-01-004, Interna-

tional Computer Science Institute, Berkeley, CA, 2001.

[108] Lokendra Shastri. Episodic memory and cortico-hippocampal interactions. Trends

in Cognitive Sciences, 6(4):162–168, 2002.

[109] Lokendra Shastri. Calo episodic memory architecture. online presentation, 2004.

131

[110] Barry Smyth and Mark T. Keane. Remembering to Forget: A Competence-

Preserving Case Deletion Policy for Case-Based Reasoning Systems. In Proceedings

to the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-

95), pages 377–383, 1995.

[111] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[112] Luca Spalazzi. A Survey on Case-Based Planning. Artificial Intelligence Review,

16(1):3–36, 2001.

[113] L. R. Squire. Memory and the Hippocampus: A Synthesis from Findings with Rats,

Monkeys, and Humans. Psychological Review, 99:195–231, 1992.

[114] Srinath Srinivasa and Sujit Kumar. A Platform Based on the Multi-Dimensional Data

Model for Analysis of Bio-molecular Structures. In VLDB, pages 975–986, 2003.

[115] Dan Tecuci. A Generic Episodic Memory Module. Ph.D. Proposal, August 2005.

http://www.cs.utexas.edu/ tecuci/proposal/proposal.pdf.

[116] Dan Tecuci and Bruce Porter. Using an Episodic Memory Module for Pattern Cap-

ture and Recognition. In Ken Murray and Ian Harrison, editors, Capturing and Us-

ing Patterns for Evidence Detection: Papers from the 2006 Fall Symposium., Menlo

Park, CA, 2006. AAAI Press. Technical Report FS-06-02.

[117] Dan Tecuci and Bruce Porter. A Generic Memory Module for Events. Key West,

FL, 2007. Proceedings to the 20th Florida Artificial Intelligence Research Society

Conference (FLAIRS20).

[118] Endel Tulving. Episodic and semantic memory. In E. Tulving and W. Donaldson,

editors, Organization of Memory. Academic Press, 1972.

[119] Endel Tulving. Elements of Episodic Memory. Clarendon Press, Oxford, 1983.

132

[120] W. van Melle, E.H. Shortliffe, and B.G. Buchanan. EMYCIN: A Knowledge En-

gineer’s Tool for Constructing Rule-Based Expert Systems. In B.G. Buchanan and

E.H. Shortliffe, editors, Rule-Based Expert Systems: The MYCIN Experiments of the

Stanford Heuristic Programming Project, chapter 15. Addison-Wesley, 1984.

[121] Manuela M. Veloso. Learning by Analogical Reasoning in General Problem Solving.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA, August 1992. Available as technical report CMU-CS-92-174.

[122] Manuela M. Veloso. Planning and Learning by Analogical Reasoning. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1994.

[123] Steven Vere. Organization of the Basic Agent. SIGART Bulletin, 2(4):164–168,

1991.

[124] Steven Vere and Timothy Bickmore. A Basic Agent. Computational Intelligence,

4:41–60, 1990.

[125] Rosina Weber, David Aha, and I. Becerra-Fernandez. Intelligent Lessons Learned

Systems. International Journal of Expert Systems — Research & Applications, 20(1),

2001.

[126] P. Willett, J.M. Barnard, and G.M. Downs. Chemical similarity searching. Journal

of Chemical Information and Modeling, 38(6):983–996, November 1998.

[127] Terry Winograd. Frame representations and the procedural - declarative controversy.

In D.G. Bobrow and A. Collins, editors, Representation and Understanding, pages

185–210. Academic Press, 1975.

[128] J. T. Wixted. Analyzing the empirical course of forgetting. Journal of Experimental

Psychology: Learning, Memory & Cognition, 16:927–935, 1990.

133

[129] J. T. Wixted and E. B. Ebbesen. On the Form of Forgetting. Psychological Science,

2:409–415, 1991.

[130] J. T. Wixted and E. B. Ebbesen. Genuine Power Curves in Forgetting: A Quantitative

Analysis of Individual Subject Forgetting Functions. Memory & Cognition, 25:731–

739, 1997.

[131] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph Indexing: A Frequent Structure-

Based Approach. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD inter-

national conference on Management of data, pages 335–346, New York, NY, USA,

2004. ACM Press.

[132] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure Similarity Search in Graph

Databases. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, pages 766–777, New York, NY, USA, 2005.

ACM Press.

[133] Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based Ap-

proach. Springer-Verlag, London, UK, 1997.

[134] Peter Z. Yeh. Flexible Semantic Matching of Rich Knowledge Structures. PhD thesis,

University of Texas at Austin, Aug. 2006.

[135] Peter Z. Yeh, B. Porter, and K. Barker. A unified knowledge based approach for

sense disambiguation and semantic role labeling. In Proceedings of the Twenty-First

National Conference on Artificial Intelligence (AAAI 2006), 2006.

[136] Peter Z. Yeh, Bruce Porter, and Ken Barker. Using Transformations to Improve

Semantic Matching. In K-CAP 2003: Proceedings of the Second International Con-

ference on Knowledge Capture, pages 180–189, 2003.

[137] Peter Z. Yeh, Bruce Porter, and Ken Barker. Matching utterances to rich knowledge

134

structures to acquire a model of the speaker’s goal. In K-CAP2005: Proceedings of

Third International Conference on Knowledge Capture, pages 129–136, 2005.

135

Vita

Dan Gabriel Tecuci was born in Bucharest, Romania, the son of Victoria and Ion Tecuci.

He obtained his General Baccalaureate in sciences from the ‘Informatics’ High-School in

Bucharest in 1992 and went on to attend the ‘Politehnica’ University of Bucharest. He

received his B.S. in Computer and Electrical Engineering in 1997, graduating first in his

class, and a M.S. in Electrical Engineering in 1998. From 1997 until 1999 he worked as an

Assistant Instructor in the Department of Computer Science at the same university. From

1998 until 1999 he also worked as a software developer for CornerSoft Tech in Bucharest,

Romania. In the fall of 1999 he enrolled in the Ph.D. program in Computer Sciences at The

University of Texas at Austin, where he received his M.S. in December 2001.

Permanent Address: 3463 Lake Austin Blvd. Apt. B

Austin, TX 78703

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the

American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das,

Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay, James A.

Bednar, and Ayman El-Khashab.

136

